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EXECUTIVE SUMMARY 

The objective of this study was to develop novel Engineered Cementitious Composites (ECC) 
materials implementing sugarcane bagasse ash (SCBA) to produce cost-effective and practical 
ECC for repair and new construction of transportation infrastructure in the region. To this end, the 
effects on the mechanical and physical properties of ECC materials of: (1) Louisiana raw SCBA 
(RBA) as a partial and complete replacement of sand (i.e., class S mixtures); (2) Louisiana post-
processed SCBA (PBA) as a partial replacement of cement (i.e., class C mixtures); and (3) Ecuador 
raw SCBA (EBA) as a partial and complete replacement of sand (i.e., class S-E mixtures) were 
studied. Sand replacement levels with RBA and EBA evaluated included 25, 50, 75, and 100% (by 
volume), while cement replacement levels with PBA studied included 40, 50, and 60% (by mass). 
The SCBA labeled as RBA was SCBA collected from a Louisiana sugar mill, which was subjected 
to minor processing by drying (at 65°C for 10-12 hours) and sieving (using a No. 20 sieve) to 
remove moisture and coarse impurities. On the other hand, the SCBA labeled as PBA was 
produced by further processing of RBA by burning (at 450°C for 3 hours) and grinding (in a jar 
mill at 300 rpm for 35 minutes). The SCBA labeled as EBA was produced in a similar manner to 
RBA; however, this material was collected from a sugar mill located in Ecuador. RBA was mainly 
composed of silica and exhibited a total pozzolanic component of 52.5%. However, RBA 
presented high carbon content, large particle size (i.e., 256 𝜇m average particle size) relative to 
cement, and a low strength activity index (SAI) of 71.2%; thus, failing to meet ASTM C618 
requirements to be classified as a pozzolan. On the other hand, PBA exhibited low carbon content, 
small particle size (i.e., 28 𝜇m average particles), satisfactory SAI (i.e., 78.8%), and a high 
pozzolanic component (i.e., 72.6%) to be classified as a class N pozzolan per ASTM C618. 
Furthermore, EBA exhibited a significantly higher SAI (i.e., 91.1%) in comparison to the RBA. 
However, like RBA, EBA exhibited large particle size (i.e., mean particle size of 248 μm) relative 
to cement and high carbon content. The important difference in SAI between RBA and EBA 
highlights the effect of SCBA source on the material properties. 

PBA was used as a supplementary cementitious material (SCM) in ECC mixtures. In contrast, 
RBA and EBA were used as a sand replacement since these could not be used as SCMs and 
exhibited a particle size comparable to that of the microsilica sand commonly used in ECC. Tests 
conducted to evaluate the class S and class C mixtures synthesized in this study included 
compressive strength test (ASTM C39), uniaxial tensile test (per JSCE recommendations), surface 
resistivity test (AASHTO T358), shrinkage test (ASTM C157), and coefficient of thermal 
expansion test (ASTM C531), and slant shear test. In the case of S-E mixtures produced in 
Ecuador, tests conducted included compressive strength test (ASTM C109) and flexural strength 
test (ASTM C293). 

For class S mixtures, it was found that the increase in sand replacement with RBA caused minor 
reductions in the compressive strength of ECC materials at 28 days of curing. This was attributed 
to the increment in air content observed, which was associated with the higher HRWR dosage 
required to produce workable ECC mixtures with increasing contents of RBA. Furthermore, the 
implementation of RBA as sand replacement produced a dramatic improvement in the tensile 
ductility of the ECCs. Relative to control, the maximum enhancement in tensile strain capacity 
reported was 311%, which occurred at 100% of sand replacement with RBA. Moreover, the tensile 
strength of all RBA admixed ECC also improved compared to control, where the maximum 
reported an increase of 22.3% occurred at 25% of sand replacement with RBA. The increase in the 
tensile ductility of the composites was attributed to the likely reduction of 𝐽  and enhancement 
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of fiber dispersion (due to the decrease of the aggregate particle size), as well as the potential 
increase in 𝐽  (due to the decrease in fiber/matrix chemical bond from the possible fiber carbon 
coating effect produced by RBA). On the other hand, the tensile strength enhancement observed 
was attributed to RBA's filler and/or pozzolanic effect, which likely improved the fiber/matrix 
frictional bond. Upon completion of the uniaxial tensile test for all class S ECC, the average 
residual crack width ranged from 51.3 to 58.2 µm; thus, suggesting an excellent durability 
potential. The surface resistivity of class S ECC materials showed a progressive decrease with the 
increment in sand replacement with RBA. Yet, the control mixture and S-25 fell in the category 
of low CIP. Furthermore, ECC mixtures using 50, 75, and 100% RBA as a sand replacement fell 
in the category of medium CIP. The decrease in surface resistivity with RBA addition was 
attributed to the increase in air content reported, RBA's porous nature, and RBA's high carbon 
content. Apart from S-25 at 28 days of curing, all ECC implementing RBA showed an increase in 
shrinkage compared to control at all ages of curing. The higher shrinkage observed for RBA 
admixed ECC was attributed to the decrease in aggregate particle size due to the replacement of 
fine river sand with RBA. However, a clear relationship between RBA content and shrinkage was 
not evident. Due to its satisfactory mechanical strength, high tensile ductility, and proper fresh 
state workability, ECC mixture S-75 was selected to evaluate the bond with concrete under the 
slant shear test. The composite specimen did not fail in the slant surface, suggesting excellent bond 
characteristics of this novel composite material with concrete. 

The implementation of cement replacement with PBA in class C mixtures produced significant 
reductions in compressive strength. The maximum decrease reported of 39.1% occurred at the 
maximum cement replacement level evaluated of 60% by weight. The important decrease observed 
in compressive strength was attributed to the fact that the specimens were evaluated at 28 days of 
curing; thus, substantially limiting the contribution of the pozzolanic reaction of PBA to the 
strength gain of the ECC. Nevertheless, the use of PBA as partial cement replacement did generate 
an enhancement in the tensile ductility of all the PBA admixed ECC. Compared to the control ECC 
mixture, a tensile strain capacity increase of up to 85% was reported for the ECC material utilizing 
a 50% cement replacement with PBA. These observations were primarily attributed to a likely 
decrease in 𝐽  (due to the weakening of the cementitious matrix with PBA addition) and a possible 
increase in 𝐽  (associated with the decrease in the fiber/matrix chemical bond due to the reduction 
in the concentration of calcium ions in the matrix). Furthermore, compared to control, the tensile 
strength of the class C mixture using 40% of cement replacement with PBA marginally increased 
(i.e., by 4.1%); yet, mixtures using 50% and 60% of cement replacement with PBA exhibited lower 
tensile strengths compared to control with the maximum decrement being 28.1% at 60% of cement 
replacement with PBA. The surface resistivity of PBA admixed ECC mixtures increased with the 
increment in cement replacement with PBA. However, all class C mixtures, including control, fell 
into the category of high CIP. This was attributed to the fact that class C mixtures did not use fly 
ash in its composition. Moreover, the progressive enhancement in surface resistivity with PBA 
increase was attributed to PBA's filler/pozzolanic effect. Nevertheless, it was recognized that this 
effect was much less influential as that of fly ash since even at 60% cement replacement with PBA, 
surface resistivity values for class C mixtures were low compared to those observed for class S 
mixtures (which did implement fly ash). The lack of fly ash in class C mixtures was also associated 
to the significant increase in shrinkage values during curing reported for class C mixtures 
compared to class S mixtures. Moreover, except for C-50 at 7 days of curing, shrinkage values for 
PBA admixed ECC mixtures observed were higher than control at all curing ages. Furthermore, a 
distinctive relationship between shrinkage and PBA content was observed at 14 and 28 days of 
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curing, where the maximum shrinkage increase reported at 28 days of curing was 24.4% for C-60 
(compared to control). Since ECC mixture C-50 was the composite exhibiting the highest tensile 
ductility from all the class C materials, it was selected for slant shear test evaluation. The failure 
mode of C-50 on a concrete substrate did not occur in the slant surface; therefore, indicating 
excellent bond properties of this material. 

For class S-E mixtures, the implementation of sand replacement with EBA produced an increase 
in compressive strength of ECC at 7 and 28 days of curing. The maximum increase in compressive 
reported at 28 days was of 21.0% and occurred at a sand replacement with EBA of 75%. 
Improvements observed were attributed to the high SAI exhibited by EBA. In the case of flexural 
strength, similar improvements were observed for EBA admixed ECC materials. The maximum 
enhancement in flexural strength of 21.5% at 28 days of curing was reported for the ECC mixture 
using 100% of sand replaced with EBA. These improvements were attributed to EBA's pozzolanic 
activity and/or filler effect, which likely enhanced the fiber bridging capacity of the EBA admixed 
ECC mixtures. 

The experimental results and analysis show that the beneficial use of raw SCBA as sand 
replacement in ECC exhibits great promise as it yields composites exhibiting satisfactory 
mechanical strength and high tensile ductility. As such, future research should be conducted on 
evaluating the long-term properties and durability of ECCs using raw SCBA as sand replacement. 
On the other hand, the use of PBA as cement replacement in ECC presents several challenges and 
significantly underperforms in contrast to other SCMs such as fly ash conventionally used in the 
manufacture of ECC. Yet, the evaluation of hybrid systems implementing fly ash and PBA may 
open the possibility of using this agricultural by-product as a partial replacement of cement in 
ECC. 
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1. INTRODUCTION 

Concrete is brittle and possesses a low tensile strength. This allows for the occurrence and 
propagation of cracks due to loading or changing environmental conditions (1). Moreover, cracks 
in concrete are highly related to the deterioration and failure of concrete pavements, overlay 
systems, and bridges; hence, the improvements of crack resistance in concrete materials are of 
particular interest for the transportation sector. Adding fibers to concrete is a well-established 
practice to mitigate the brittle behavior of concrete by limiting crack growth and propagation. Yet, 
traditional fiber reinforced concrete (FRC) produces relatively marginal improvements in ductility 
and tensile strength. Furthermore, FRC continues to exhibit a strain-softening phenomenon after 
first cracking (single localized crack growth associated with a decrease in load carrying capacity) 
under tensile stresses, as shown in Figure 1a. For this reason, high-performance fiber-reinforced 
cementitious composites (HPFRCC) were developed as a superior alternative to mitigate concrete 
brittleness and its weak behavior under tensile stresses. In contrast to FRC, HPRFRCC exhibit a 
strain hardening performance after first cracking under tensile stresses. Strain-hardening occurs 
due to the inelastic deformation of the composite through the formation of multiple micro-cracks 
(2). This inelastic deformation occurs with an increase in load-carrying capacity and is referred to 
as pseudo-strain-hardening (PSH) to differentiate this mechanism from the strain-hardening 
phenomena observed in metals (3). Early versions of HPFRCC, such as SIFCON (Slurry Infiltrated 
Fiber Concrete), were designed by using high contents of fiber (4-20% volume fraction) and 
achieved desirable improvements in tensile strength and ductility (4). However, high fiber content 
limited its application in the field due to constructability issues and cost. 

(a) (b) 
Figure 1. (a) Stress vs. Strain behavior of cementitious materials in tension, (b) High deflection capacity of ECC material 
developed at LSU. 

Engineered Cementitious Composites (ECC), also known as bendable concrete (Figure 1b), are a 
novel class of HPFRCC that are designed and optimized based on micromechanics principles to 
exhibit a high tensile ductility (1 to 8% strain capacity in tension) through a robust PSH behavior 
at low fiber content (usually 2% volume fraction) (5). This makes ECC practical to be implemented 
in the field using existing equipment and techniques and significantly more cost-effective than 
early versions of HPFRCC. Research on ECC durability has shown promising results against major 
types of concrete deterioration, including corrosion, freeze-thaw, alkali-silica reaction, and sulfate 
attack (4, 6, 7). Furthermore, ECC exhibits significant self-healing characteristics because of its 
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tight crack width that allows autogenous healing mechanisms of cementitious materials to be 
effective; thus, further enhancing the durability potential of this novel composites (8, 9). To date, 
ECC has been applied in bridge deck link slabs, shear keys, and several repairs (wall retrofit, patch 
repair of bridge decks, repair of irrigation channels, earth-retaining walls, etc.) of concrete 
structures with successful performance (4, 10–12). While ECC properties are promising for the 
repair and new construction of transportation infrastructure, its high cost (in contrast to 
conventional concrete) limits its widespread application. ECC typically uses a 2% volume fraction 
of polyvinyl alcohol (PVA) fiber, microsilica sand, and high cement contents, which significantly 
increase its cost compared to regular concrete. Consequently, the implementation of low-cost 
materials that can partially or completely replace cement and microsilica sand can provide more 
cost-effective and practical ECC materials. 

In Louisiana, the sugar production industry is of immense relevance generating a yearly economic 
value of $3 billion (13). According to the American Sugarcane League, in 2018, more than 16.9 
million tons of sugarcane was harvested in the state yielding 1.8 million tons of sugar and nearly 
3.5 million tons of a fibrous by-product sugarcane bagasse fiber (SBF) (14). Typically, bagasse is 
burned by the sugar mills to generate energy and mitigate the fire hazard presented by dry fibrous 
bagasse (see Figure 2a) (15). Depending on the bagasse's burning process, the obtained ash yield 
ranges between 3% to 9%. This ash by-product is known as sugarcane bagasse ash (SCBA) and is 
considered an agricultural waste with no economic value. In addition, bagasse ash constitutes a 
potential environmental hazard, leading to containment and disposal costs to the industry (see 
Figure 2b). Based on the literature, when properly processed by sieving (to remove coarse 
particles), controlled burning (to remove excess carbon content), and grinding (to reduce particle 
size), SCBA can exhibit significant pozzolanic activity due to its chemical composition and small 
particle size (16–21). Typically, processed SCBA consists of more than 60% silicon oxide (SiO2) 
and 7% aluminum oxide (Al2O3) by weight. In turn, this makes bagasse ash an excellent candidate 
for an affordable supplementary cementitious material (SCM) to partially replace cement in the 
production of ECC. 

(a) (b) 
Figure 2. Land disposal of: (a) Bagasse ash and (b) Bagasse fiber. 

While SCBA can serve as an SCM material when adequately processed, raw bagasse ash (i.e., 
SCBA obtained directly from the mill without further processing) exhibits high carbon content and 
low pozzolanic activity. While raw SCBA cannot be utilized as an SCM, this lower quality ash 
presents excellent potential as a highly fine aggregate material to replace the expensive microsilica 
sand (which can be more expensive than cement) used in ECC production. This project aims to 
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evaluate the feasibility of utilizing bagasse ash with different levels of quality as cement and fine 
aggregate replacement for the manufacture of ECC to reduce its cost, make it more practical, and 
increase its greenness. 

1.1 ECC Design 
Two primary conditions need to be met for the PSH behavior of ECC materials to occur, the 
strength criterion and the energy criterion (22). The strength criterion (Eq. 1) guarantees adequate 
fiber-bridging capacity (𝜎0) upon crack initiation and requires the first-cracking strength of the 
composite (𝜎𝑐𝑠) to be less than the fiber-bridging capacity on any plausible crack plane (22). 

𝜎0 ≥ 𝜎𝑐𝑠 [1] 

where 𝜎  is determined by the preexisting initial flaw size and matrix fracture toughness (𝐾 ).If 
this criterion is not met (i.e., the insufficient fiber-bridging capacity to carry tensile load upon 
cracking of the cementitious matrix, the composite would fail due to the fiber rupture or pullout 
upon crack initiation (23). 

The second condition, the energy criterion (Eq. 2), guarantees the requirement for steady-state flat 
crack propagation, as first demonstrated by Marshall and Cox using J-integral analysis (24, 25). 

    𝐽  = 𝜎0𝛿0 −∫ 𝜎(𝛿) 𝑑𝛿 ≥ 𝐽  = 𝜎 𝛿  − ∫ 𝜎(𝛿)𝑑𝛿 [2] 
 

Where 𝐽  is the complementary energy of the fiber-bridging relation; 𝛿  is the crack opening 
corresponding to 𝜎 ; 𝜎(𝛿) is the fiber-bridging relation; 𝐽  is the crack-tip matrix toughness; 𝜎  

is the steady-state cracking stress; and 𝛿  is the crack opening corresponding to 𝜎 . 

Per equation 2, 𝐽  needs to be equal or greater than 𝐽  for the energy criteria to be satisfied. If the 
crack-tip matrix toughness 𝐽  (sensitive to the details of the cementitious matrix design) is too 
high, or inadequate energy absorption occurs in the increasing phase of the 𝜎(𝛿) curve, then the 
steady-state crack propagation is hard to be achieved (26, 27). Figure 3 presents a graphical 
representation of 𝐽  and 𝐽  on a schematic fiber-bridging curve. From Eqs.1 and 2, successful 
design of ECC is achieved when, both, the strength and the energy criteria are satisfied. Consistent 
with the conditions for PSH behavior presented above, if the ratios 𝐽  ̸ 𝐽  and 𝜎0 ̸ 𝜎𝑐𝑠 named 
pseudo strain-hardening performance indexes (PSH indexes) are greater than one then, both, the 
strength and the energy criteria will be met. Otherwise, if any of the two ratios are less than one, 
the tensile-softening behavior of fiber reinforced concrete (FRC) will prevail (as shown in Figure 
1a). It is important to notice that the equality signs on Eq.1 and Eq.2 assume a perfectly 
homogeneous material; thus, in practice the need for PSH indexes greater than one are required 
for robust PSH performance (2, 24). Theoretical and experimental evidence suggests that a PSH 
strength index of 1.3 and a PSH energy index of 2.7 correlates with saturated multiple cracking 
behaviors of fiber-reinforced cementitious composites (28). Saturated PSH behavior refers to the 
before crack spacing is too small for further crack formation (due to the inability of sufficient stress 
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transfer from fibers maximum multiple cracking intensity that can occur in fiber-reinforced 
cementitious composites crack plane (29). 

Figure 3. Fiber bridging relation, 𝝈(𝜹) curve (adapted from Noorvand et al. (30)). 
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2. OBJECTIVES 

The objective of this study is to develop novel Engineered Cementitious Composite (ECC) 
materials implementing sugarcane bagasse ash (SCBA) to produce cost-effective and practical 
ECC materials for repair and new construction of transportation infrastructure in the region. 
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3. LITERATURE REVIEW 

A comprehensive literature review was conducted to understand the finding from previous studies 
evaluating the use of SCBA in concrete materials. The literature review primarily focused on the 
implementation of SCBA as a replacement of fine aggregate and/or cement in cementitious 
composites. Furthermore, it also reviews previous studies that focused on enhancing ECC 
mixtures' greenness by replacing microsilica sand and/or cement with sustainable alternative 
products. 

3.1. Use of Bagasse Ash in Cementitious Materials 

3.1.1. Use of Bagasse Ash as Fine Aggregate 
Different studies have been conducted to evaluate the feasibility of using SCBA as a substitute to 
fine aggregate in concrete mixtures. Modani and Vyawahare (31) investigated the influence of 
replacing fine aggregate with raw bagasse ash (collected from a local sugar factory in India) in 
concrete mixtures. A total of five mixtures with different replacement levels, i.e., 0%, 10%, 20%, 
30%, and 40% by volume of fine aggregate with raw SCBA were produced in this study. The study 
evaluated fresh concrete properties (i.e., slump cone test and compaction factor test) and hardened 
concrete properties (i.e., compressive strength, sorptivity, and splitting tensile strength test) for all 
concrete mixtures produced in the study. The test results revealed that raw SCBA could be used 
as a partial replacement to fine aggregate without compromising its hardened properties (31). 
Furthermore, a decrease in a slump was observed with the increase in SCBA; however, the loss in 
workability was not significant at the 10% and 20% aggregate replacement level. 

In a similar study, Sua-iam and Makul (32) replaced high volumes of fine aggregate in concrete 
mixtures with raw SCBA (collected from a local sugar mill in Thailand) and/or limestone powder. 
The influence of bagasse ash as fine aggregate was investigated by producing concrete mixtures 
with different replacement levels of fine aggregate (i.e., 0%, 10%, 20%, 40%, 60%, 80%, and 
100% by volume) with only bagasse ash, only limestone powder and with an equal volume of 
limestone powder and bagasse ash. The study evaluated all concrete mixtures' workability by 
conducting slump flow, T50cm slump flow time, V-funnel flow time, and J-ring flow. In addition, 
the study also assessed the hardened properties (ultrasonic pulse velocity and compressive 
strength) of each concrete mixtures (32). The test results revealed that replacing fine aggregates 
with 20% limestone powder and 20% bagasse ash yields a mixture with improved workability and 
hardened properties compared to the control mixture. Nevertheless, the improvement in 
compressive strength due to the replacement of fine aggregates was marginal (32). In terms of the 
mixtures using only SCBA as a substitute to fine aggregate, a significant decrease in workability 
with the increase in aggregate replacement level was observed. Similarly, increasing amounts of 
SCBA generally decreased the strength at all curing ages due to the greater porosity of the material. 

Sales and Lima (33) used raw SCBA (collected from sugar mills located in São Carlos, SP, Brazil) 
as sand replacement in concrete and mortar mixtures. Different replacement levels of sand with 
SCBA (by mass) including 0%, 10%, 15%, 20%, 30%, 50%, and 100% were evaluated in this 
study. The influence of SCBA as a sand replacement in mortars and concrete were investigated by 
evaluating compressive strength, tensile strength, and elastic modulus of each mixture. The 
experimental characterization of raw SCBA revealed that SCBA presents similar physical 
properties to that of natural sand. Furthermore, test results revealed that, when used as a partial 
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replacement to sand, SCBA produces mortars and concrete with similar mechanical properties as 
mixtures with natural sand (i.e., control) (33). 

A study by Humberto et al. (34) assessed the properties of mortars using low volumes of SCBA 
as a partial replacement to sand in mortars. The raw SCBA used in the study was collected from 
sugar mills located in the south of Brazil. The collected ash was minimally processed by sieving 
with a 0.6 mm sieve to produce the SCBA to be used in concrete mixtures. The study produced 
five mixtures with different fine aggregate replacement levels with SCBA (i.e., 0%, 5%, 10%, 
15%, and 20% by volume). All produced mortars were characterized in the plastic state by 
evaluating water retention, air content, and bulk density. Similarly, the influence of SCBA on 
hardened properties was determined in terms of compressive strength, tensile strength by bending 
test, axial compressive strength, flexural and longitudinal Young’s modulus, and capillary 
coefficient. The experimental test results showed that raw SCBA could be used as a partial 
replacement to sand without compromising compressive strength. In addition, statistical analysis 
revealed that SCBA did not significantly change the properties of SCBA admixed mortars 
compared to the control mixture (34). 

The aforementioned studies have scrutinized the different replacement levels of fine aggregate 
with untreated SCBA in concrete. These studies showed that the use of raw SCBA as a partial or 
complete substitution to fine aggregate is possible. However, the improvement in the mechanical 
properties is minimal. 

3.1.2. Use of Bagasse Ash as a Supplementary Cementitious Material 
Various studies have been conducted to determine the feasibility of using SCBA as a partial 
replacement to cement in concrete mixtures. While many studies revealed that SCBA produced in 
sugar mills does not exhibit pozzolanic properties due to high carbon content, few researchers have 
reported that post-processing of raw SCBA by further burning, grinding, or a combination of these 
can yield materials of SCM quality (16, 20, 35, 36). Ganesan et al. (16) investigated the feasibility 
of using post-processed SCBA as an SCM in concrete. The SCBA collected from the sugar mill, 
located in southern India's, was further burned at 650°C for 1 hour under laboratory conditions and 
grounded to a mean particle size of 5.4 𝜇m before using as a substitute to cement in concrete 
mixtures. The effects of post-processed SCBA on concrete properties were determined through 
compressive strength, water absorption, splitting tensile strength, permeability, and resistance to 
chloride ion penetration tests. The experimental results revealed that post-processed SCBA could 
replace up to 20% of cement without compromising its compressive strength (16). The study also 
showed that the increase in SCBA content (i.e., up to 25% by cement mass) reduces water 
permeability and increases the resistance to chloride permeation and diffusion of the concrete 
mixture. 

In a similar study, Amin (37) studied the effects of using post-processed SCBA as a partial 
substitute to cement in concrete mixtures. The post-processed SCBA was produced by further 
burning (at 650°C for 1 hour) and grinding SCBA collected from multiple sugar mills located in 
Pakistan. Seven different cement replacement levels with post-processed SCBA ranging from 0% 
to 30% (at 5% increments) were evaluated in this study. The study evaluated different concrete 
properties such as compressive strength, splitting tensile strength, and chloride diffusion for all 
mixtures produced in the study. The experimental results revealed that up to 20% cement 
replacement with SCBA, no significant reduction in compressive strength was observed. In 
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addition, the partial replacement of cement with SCBA resulted in the development of high early 
strength and showed an improvement in resistance to chloride ion penetrability by 50% (37). 

Montakarntiwong et al. (38) investigated the compressive strength of concrete utilizing various 
types of bagasse ash with different fineness and loss on ignition (LOI)). Four different types of 
bagasse ash with two levels of LOI (referred to as high and low LOI) and two levels of fineness 
(i.e., unground and ground) were considered in the study. Concrete mixtures using 0%, 20%, 30%, 
and 40% by weight of cement replaced with SCBA were produced in the study. Based on the 
experimental findings, up to 30% and 20% of cement can be replaced with ground bagasse ash 
with low LOI and high LOI, respectively (38). At these replacement levels, concrete mixtures 
exhibited compressive strengths equivalent to the control mixture. 

Bahurudeen and Santhanam (39) investigated the influence of production methodology on the 
pozzolanic activity of SCBA. This study performed microstructural characterization and evaluated 
the pozzolanic performance of various types of SCBAs produced with different processing 
methodologies (i.e., grinding, burning, or combination of these). When used as a replacement to 
cement in mortar mixtures, the as-received SCBA negatively influenced compressive strength and 
did not meet the minimum requirement of pozzolanic activity index (i.e., 75%) to be classified as 
a pozzolan (40). As such, it was concluded that raw SCBA without any processing could not be 
used as SCMs cementitious composites. However, post-processing of SCBA by different 
methodologies, including burning (at 700°C), sieving (through 300 𝜇m), and grinding (to particles 
finer than 53𝜇m) showed higher strength activity index (SAI) than raw SCBA. In addition, the 
study also investigated the influence of combining different processing methodology on 
pozzolanic reactivity, i.e., SCBA produced by burning at 700°C and then ground to cement 
fineness (300 m2/kg), and SCBA produced by sieving raw SCBA through 300 𝜇m sieve and then 
ground to cement fineness. Among these processing methodologies, sieved and ground samples 
exhibited higher SAI (i.e., 106%) than burned and ground SCBA samples (i.e., 90%) at 28 days of 
curing. The study concluded that sieving (through a 300 𝜇m sieve) and grinding (to cement 
fineness) is the optimum production methodology to yield high pozzolanic activity index with 
minimum processing energy (39). This post-processed SCBA showed excellent results in 
comparison to any other processing methodologies evaluated in this study. 

Subedi et al. (21) compared the pozzolanic activity of SCBAs produced from three different 
methodologies: (i) SCBA produced in sugar mills from uncontrolled burning (i.e., raw SCBA); (ii) 
SCBA produced from post-processing of raw SCBA; and (iii) SCBA produced by controlled 
burning of bagasse fibers under laboratory conditions. Experimental results showed that while 
controlled burning of sugarcane bagasse fiber under laboratory conditions yields SCBA with low 
carbon content and high strength activity index, raw SCBA obtained in the field presented high 
carbon content and low strength activity index (i.e., 69%). This is the case since SCBA produced 
in the sugar mill produces uncontrolled burning, which produces large temperature gradients and 
fails to eliminate all the organic carbon in the SCBA. Furthermore, it was shown that post-
processing of raw SCBA by further burning and grinding resulted in similar pozzolanic properties 
to those of controlled SCBA. Considering the low SCBA yield of the controlled burning of bagasse 
fibers, the study concluded that post-processing of raw SCBA by further burning at 450°C for 3 
hours and grinding is the optimum processing methodology due to its high SCBA yield and high 
strength activity index (i.e., 90%). 
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The aforementioned studies showed that post-processed SCBA could be used as a partial 
substitution to cement in regular concrete. As such, the utilization of SCBA as an SCM alternative 
in the production of concrete mixtures can potentially benefit an underutilized agricultural waste 
and enhance the cost-effectiveness and greenness of ECCs. 

3.2. Development of Green and Cost-Effective ECC 

3.2.1. Aggregates Used in ECC Materials 
The wide application of ECC materials has been mainly hindered by its high cost and relatively 
low practicality. ECC material's high cost is primarily driven by the use of manufactured 
microsilica sand and 2% volume fraction of polyvinyl alcohol (PVA) fiber; yet, the use of high 
cement content is also a contributing factor to ECC’s high cost relative to conventional concrete. 
Contradictorily to conventional practice in concrete materials, ECC mixtures are intentionally 
designed to facilitate crack initiation and propagation in the cementitious matrix. This promotes 
the necessary PSH behavior, which endows these composites with its ductile strain-hardening 
characteristics. As such, ECC mixtures forgo the use of coarse aggregate to lower the matrix 
fracture toughness (i.e., Km); thus, resulting in composites using only fine aggregate. In order to 
minimize Km and yield high tensile ductility, typically highly fine sands such as manufactured 
microsilica sand (with particle size smaller than 250 μm) are used. However, microsilica sand is 
highly expensive (more expensive than cement) and consumes more energy during production in 
contrast to natural fine aggregates. In addition, microsilica sand is not widely available, which 
limits the applicability of ECC materials in construction. As such, to improve ECC materials 
practicality and cost-effectiveness, various studies have been conducted to determine the 
feasibility of using alternatives to microsilica sand in ECC mixtures. 

Mustafa et al. (41) evaluated the use of five types of fine aggregate in ECC mixtures: microsilica 
sand with maximum aggregate size (MAS) of 200 μm (as control); crushed dolomitic limestone 
sand with MAS of 1.19 mm and 2.38 mm; and gravel sand with MAS of 1.19 mm and 2.38 mm. 
The study performed compressive strength, uniaxial tensile, flexural, and drying shrinkage tests 
for all the ECC materials. It was observed that coarser aggregates slightly reduce the ductility of 
the composites, which was attributed to the adverse effect of coarser aggregate on fiber dispersion 
and the likely increase of Km. However, it was shown that increasing the replacement of cement 
with fly ash was effective in mitigating the adverse effect of coarser sands on composite ductility. 
In addition, the use of coarser sands was shown to be effective in reducing drying shrinkage. It 
was concluded that ECC materials using sands coarser than microsilica sand could be successfully 
manufactured (41). 

Noorvand et al. (30) studied the use of two different types of river sand, coarse (MAS of 1.18 mm) 
and fine (MAS of 0.6 mm), on the mechanical properties of ECC. Furthermore, the study also 
evaluated the use of crumb rubber as a partial replacement of sand (20% sand replacement with 
crumb rubber by volume) in ECC. The experimental results demonstrated that the different sand 
types produced a minor influence on ECC’s mechanical properties (30). On the other hand, the 
replacement of sand with crumb rubber was highly effective in enhancing the tensile ductility of 
ECC; however, significant decrements in strength were observed due to the defect-like nature of 
crumb rubber. 
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Lepech et al. (42) evaluated the complete substitution of virgin silica sand (with an average particle 
size of 110 𝜇m and maximum particle size of 300 𝜇m) with waste foundry sand from the calcinator 
baghouse (FCS) and foundry green sand (FGS). FCS is captured by foundry dust collection 
systems and is nearly identical in appearance and mechanical properties to virgin sand. Green 
foundry sand is a waste from lost foam metal casting with the particle size distribution coarser than 
the virgin sand. The flowability test (flow table test) showed that using these green sand 
alternatives improved flowability in the fresh state. However, the complete substitution of virgin 
sand with FGS reduced the tensile strain capacity by over 50% compared to the control ECC. This 
was attributed to the presence of carbon residue in FGS along with the PVA oil coating (1.2% by 
weight), which substantially reduced the fiber-bridging capacity of the composites; thus, leading 
to a decrease in the complimentary energy (𝐽  ) of the fiber-bridging relation of 80%. Furthermore, 
the FSG produced a decrease in matrix toughness of nearly 40%. In balance, these counteracting 
mechanisms resulted in a reduced PSH energy index; thus, negatively influencing the tensile 
ductility. To address the significant decrease in interface properties, the study also produced an 
ECC mixture containing FGS and PVA fiber (with oil coating at 0.3%). This mixture increased 
the tensile strain capacity from 1.5% to 3.5%. This was credited to the presence of carbon in FGS 
and low oil coating of PVA fiber, which created an optimum balance in reducing matrix toughness 
and improvement in fiber/matrix interface properties. As such, this study revealed that it is possible 
to use these waste materials as sand replacement in ECC mixtures without compromising its 
mechanical properties if the ingredients are carefully tailored to yield PSH behavior (42). 

The aforementioned studies showed that more conventional types of sands (coarser than 
microsilica sand) could be used to produce ECC materials. However, achieving high tensile 
ductility while implementing these sands can be more challenging and requires careful tailoring of 
the ECC composition. It is worth mentioning that the implementation of coarser sands in ECC 
mixtures can negatively affect fiber distribution and result in lower composite ductility, especially 
when manufacturing ECC at a large-scale in the field where high shear planetary mixers like the 
once typically used in the laboratory may not be readily available. This effect has been reported in 
a recent study, where fiber clumping was observed during the construction of an ECC ultra-thin 
whitetopping overlay using a conventional ready-mix truck (43). The ECC mixture used in the 
project implemented conventional fine river sand and did not show fiber clumping when 
manufactured in the laboratory using a planetary mixer. As such, the use of aggregate with particle 
size comparable to that of microsilica sand is preferable to minimize the possibility of fiber 
distribution problems. Consequently, finding alternative aggregate materials that are locally 
available, cost-effective, and of comparable size to micorsilica sand is of significant importance to 
enhance the greenness and practicality of ECC materials without compromising its mechanical 
performance. 

3.2.2. Use of Green Binder in ECC Mixtures 
Due to the absence of coarse aggregate in its composition, ECC mixtures consist of high cement 
content compared to the regular concrete (i.e., 2-3 times higher) (44). Consequently, this 
compromises the environmental sustainability of ECC materials as cement production is both 
energy- and emission-intensive. For instance, it has been quantified that the cement industry is 
responsible for about 8% of the global CO2 anthropogenic emissions (45). In addition, cement 
production generates a significant amount of pollutants and particulate matter (45). As such, to 
reduce the environmental impact of ECC materials, it is imperative to partially or completely 
replace cement with supplementary or alternative cementitious materials without compromising 
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its mechanical properties. To date, different researchers have produced ECC mixtures with green 
binders/fillers. These studies have reduced the cement usage in three different ways: (i) partial 
replacement of cement with SCMs such as fly ash and ground granulated blast furnace slag 
(GBBFS) and agricultural by-products such as rice husk ash (44, 46, 47); (ii) partial replacement 
of cement with relatively inert fillers such as iron ore tailings (IOTs) and limestone powder (48, 
49) and (iii) complete replacement of cement with geopolymers and alkali-activated binders (9, 
50–52). Among all these methods and materials, partial substitution of cement with fly ash is 
widely adopted to produce ECC mixtures with enhanced greenness (22, 53, 54). Fly ash is a by-
product of coal-fired electric generating plants. It is estimated that nearly 38.2 million tons of fly 
ash are produced in the US in 2017, where only 63% of this material is utilized (55). The use of 
fly ash as a partial substitute to cement enhances the material greenness by consuming an industrial 
waste stream and reducing cement consumption. In addition, the partial substitution of cement 
with fly ash reduces the cost of ECC and produces favorable effects on ECC’s properties, including 
the reduction in drying shrinkage, average crack width, and heat of hydration (56). 

Wang and Li (53) evaluated PVA-ECC mixtures with class F fly ash as a partial substitute to 
cement (FA/C ratio ranging from 0.1 to 1.5 by mass). The study investigated the influence of fly 
ash content on ECC’s matrix and fiber/matrix interface properties. The study revealed that 
increasing the fly ash content decreases the matrix fracture toughness (between 21% to 50%), 
fiber/matrix chemical bond (between 59% to 70%), and frictional bond (between 0% to 25%); 
thus, enhancing the tensile performance of ECC materials. The study concluded that waste 
products could be utilized as SCMs if the governing micromechanics parameters are controlled. 

Yang et al. (57) evaluated PVA-ECC mixtures with high amounts of cement replacement with 
class F fly ash (FA/C ratio ranging from 1.2 to 5.6 by mass). The study revealed that ECC materials' 
tensile ductility generally increases with increments in cement replacement with fly ash. This was 
credited to a decrease in the matrix fracture toughness and the fiber/matrix chemical bond. The 
average crack width and drying shrinkage also decreased at higher levels of cement replacement 
with fly ash, which are beneficial to structural durability. The average crack width reduction was 
attributed to an observed improvement in the fiber/matrix frictional bond at high replacement 
levels of cement with fly ash. On the other hand, compressive strength showed a negative trend 
with the increase in fly ash content. 

Zhang et al. (58) studied the influence of replacing cement with class F fly ash on mechanical 
properties and self-healing behavior of micro-cracked ECC mixtures. The study concluded that 
using class F fly ash as a partial replacement to cement reduces the composites' compressive 
strength but increases its ductility. However, a significant improvement in the pore structure was 
observed for ECC mixtures using fly ash due to its fine and spherical-shaped particles. 
Furthermore, the study also revealed that high volume fly ash decreases the crack width; thus, 
exhibiting excellent self-healing behavior. 

Amin et al. (59) partially substituted cement with post-processed SCBA in ECC mixtures. The 
post-processed SCBA was produced by burning SCBA collected from a sugar mill located in 
Pakistan at 650°C for 1 hour under laboratory conditions and followed by grounding. The finely 
ground SCBA was used as a partial replacement to cement at different proportions (i.e., 10%, 20%, 
and 30%) on ECC properties. The results showed that the ECC mixture utilizing 10% of SCBA as 
a substitute to cement exhibited higher compressive strength than control. Furthermore, this ECC 
mixture exhibited better tensile performance among all other mixtures evaluated in the study. 
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However, the reported tensile strain for the best-performing SCBA admixed ECC was 457µ 
(0.0457%), which is significantly lower than the ductility of a typical ECC mixture. As such, the 
characteristic robust PSH behavior of ECC was not achieved. 

Based on these studies, it is evident that the use of silica-rich pozzolanic materials as a partial 
replacement of cement can be beneficial in the manufacturing of ECC materials. As such, the 
utilization of locally available pozzolanic materials can improve the tensile performance, cost-
effectiveness, durability, and greenness of these composites. 
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4. METHODOLOGY 

4.1. ECC Materials Produced with Louisiana SCBA 

4.1.1. Materials 
In this study, the SCBA material was collected from a Louisiana based sugar mill (Figure 4). This 
material was used to produce the two different types of Louisiana SCBAs evaluated in this study, 
i.e., raw SCBA and post-processed SCBA. Table 1 presents a summary of the tests conducted to 
characterize the SCBAs. The production methodologies for both types of SCBAs are explained in 
detail in the following sub-sections. 

Figure 4. Raw SCBA collection in Louisiana’s sugar mill 

4.1.1.1 Louisiana Raw SCBA 

The SCBA collected from the sugar mill is generated from the uncontrolled burning of bagasse 
fibers. As such, the collected SCBA included large amounts of unburned fibrous particles, as 
presented in Figure 5. Raw SCBA, used as a substitute to sand in ECC mixtures, was produced by 
drying (at 65°C for 10-12 hours) and sieving (using a No. 20 sieve) the SCBA collected at the 
sugar mill. While drying was performed to remove moisture, sieving was performed to remove 
coarse impurities (i.e., unburnt fibers, gravel, etc.). The raw SCBA material obtained after drying 
and sieving were labeled as RBA. The processing methodology of RBA is illustrated in Figure 5. 

Table 1. Bagasse ash produced from different methodologies. 

Material 
SCBA 
Source 

Calcination 
Temperature (°C) 

ID Tests Performed (No. of Replicas) 

Raw SCBA Louisiana 
- RBA 

SEM (1); EDS (3); XRD (1); 
Particle Size Analysis (1); 
Chapelle’s Test (3); 
Strength Activity Index (6); 
Density and Specific Gravity (2) 

Post-processed 
SCBA 

Louisiana 
450 PBA 

Raw SCBA Ecuador 
- EBA 

SEM (1); EDS (1); XRD (1); Particle Size 
Analysis (1); Strength Activity Index (6); 
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4.1.1.2 Louisiana Post-Processed SCBA 

The methodology for the production of post-processed SCBA is presented in Figure 5. The 
processing methodology in this study was adopted from Subedi et al. (21). After drying and sieving 
(according to section 4.1.1 guidelines), RBA was further processed by burning and grinding under 
controlled laboratory conditions. In the burning phase, the RBA was calcinated at 450°C for 3 
hours to remove any unburned fibrous particles and decrease the carbon content. The burning of 
RBA changed the color of SCBA from black to brown, indicating a significant decrease in carbon 
content. After completion of the calcination process, the materials were allowed to cool inside the 
oven until the temperature reached 90°C. Subsequently, the SCBA was grounded in a jar mill at 
300 rpm for 35 minutes. The post-processed SCBA was labeled as PBA. 

Figure 5. Processing methodology for RBA and PBA 

4.1.1.3 Cement 

Ordinary Portland Cement (OPC) Type I conforming to the ASTM C150 standard was used for all 
mixtures manufactured in the study (60). The chemical composition of the cement is presented in 
Table 2. The specific gravity of the cement was 3.15. 

4.1.1.4 Fly ash 

Class F fly ash conforming to ASTM C618 was utilized in all ECC mixtures produced in this 
study. The chemical composition of the fly ash obtained from X-ray fluorescence (XRF) analysis 
is presented in Table 2. Furthermore, the particle size of fly ash obtained from laser diffraction 
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analysis is presented in Figure 6. The fly ash used in this study exhibited a mean particle size of 
22.8 𝜇m. 

Table 2. Cement and fly ash chemical composition (by weight). 

Oxide 

Cement (%) 

CaO 

63.77 

SiO2 

19.06 

Al2O3 

4.55 

Fe2O3 

3.00 

K2O Na2O 

0.37 0.00 

MgO 

2.27 

SO3 

3.43 

CO2 

-

SiO2+ 
Al2O3+ 
Fe2O3 

26.6 
Fly Ash (%) 7.97 57.94 20.03 3.67 1.24 2.14 2.02 0.49 - 81.6 

4.1.1.5 Sand 

For the ECC mixtures produced in this study, silica sand, i.e., fine river sand (specific gravity of 
2.62) with a mean particle size of 474 𝜇m and a D90 (90% passing size) of 786 𝜇m was used as 
fine aggregate. Figure 6 presents the particle size distribution of fine river sand obtained from the 
laser diffraction particle size analyzer. Standard graded sand conforming to ASTM C778 (61) was 
used for the Strength Activity Index evaluation. 
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Figure 6. Sand particle size distribution: (a) Particle size distribution frequency, and (c) Cumulative passing percent 
particle size distributions 

4.1.1.6 Polyvinyl Alcohol (PVA) fibers 

The PVA fibers utilized were non-oil-coated RECS-15 fibers from NYCON, US. The properties 
of the PVA fiber is summarized in Table 3. 

Table 3. PVA fiber properties 

Fiber Type 
Length 
(mm) Diameter (𝜇m) 

Young’s Modulus 
(GPa) 

Tensile Strength 
(MPa) 

Elongation 
(%) 

RECS-15 8 38 40 1600 6 

4.1.1.7 Superplasticizer 

A polycarboxylate based High-Range Water Reducer (HRWR) (ADVA 195) was utilized in this 
study for all ECC mixtures. HRWR was used to obtain the proper workability of the fresh mixtures. 
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In this study, the HRWR dosage was limited to 1.5% of cement content (by weight) due to its 
influence on other material characteristics such as air content. 

4.1.2. SCBA Characterization 
Raw SCBA (RBA) and post-processed SCBA (PBA) produced in this study were thoroughly 
characterized. The different analyses conducted are explained in the following subsections. 

4.1.2.1 Microstructure and Chemical Composition 

The chemical composition and morphology of SCBA can significantly influence ECC's properties 
when used as SCM or as sand replacement. As such, these characteristics of RBA and PBA were 
evaluated. The chemical composition of RBA and PBA was obtained from energy-dispersive X-
ray spectroscopy (EDS) by using a Quanta™ 3D Dual Beam™ FEG FIB-SEM, with EDAX 
Pegasus EDS/EBSD detectors, as shown in Figure 7. Furthermore, to gain insight into the 
morphology of the SCBAs, backscattered scanning electron microscopy images (BSE-SEM) were 
obtained using the same equipment. It should be noted that the EDS spectra for both SCBAs were 
collected at a current of 4 pA and a voltage of 20kV under area mode. Similarly, BSE-SEM images 
were obtained at 20kV. 

Figure 7. Quanta™ 3D DualBeam™ FEG FIB-SEM for SEM-EDS. 

4.1.2.2 Particle Size Analysis 

The particle size of fine aggregate or SCMs has a substantial effect on the matrix and fiber/matrix 
interface properties of ECC materials. While the RBA used as a sand replacement was not 
grounded, the PBA produced for SCM utilization was ground in a jar mill at 300 rpm for 35 
minutes to achieve a finer particle size distribution; and enhance its reactivity potential. The 
particle size of the SCBAs was analyzed using the Beckman Coulter LS200 laser diffraction 
analyzer, as shown in Figure 8. The equipment used for the analysis can detect particles ranging 
from size 0.4 𝜇m to 2000 𝜇m. Both SCBA materials were analyzed in a microvolume module 
where the particles were agitated for 60 seconds, and water was used as a dispersing medium. 
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Figure 8. Beckman Coulter LS 200 for particle size analysis. 

4.1.2.3 X-Ray Diffraction (XRD) 

The mineralogical phase composition (i.e., amorphous and crystalline phases) of ingredients used 
in ECC materials can significantly affect its properties. As such, the mineralogical composition of 
both SCBAs was obtained via XRD analysis. XRD analysis was conducted on a powder sample 
by using Panalytical Empyrean X-ray Diffractometer, as presented in Figure 9. It is worth 
mentioning that the XRD analysis was conducted by using CuK𝛼 radiation at 40mA and 45kV. 
Both samples were scanned from a range of 10° to 80° 2θ at a step size of 0.026°. Furthermore, 
for quantifying the mineralogical phase composition, the HighScore Plus software (62) was used. 
Furthermore, quartz (SiO2) powder was used as an amorphous standard and was analyzed in the 
same conditions as the SCBA samples. 

Figure 9. Panalytical Empyrean X-ray Diffractometer for XRD analysis. 

4.1.2.4 Density, Specific Gravity, and Absorption Test 

In this study, the density of PBA was determined as per ASTM C188 (63), and the specific gravity 
and absorption of RBA were determined as per ASTM C128 (64). To measure the density of PBA 
per ASTM C188, a Le Chatelier flask and kerosene were used. Initially, kerosene was filled up to 
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a mark between 0 and 1-mL on the flask's stem, as shown in Figure 10. After the addition of 
kerosene, the first reading on the flask was taken. Next, about 50 grams of PBA were added to the 
flask. After the SCBA was introduced, the stopper was placed, and the flask was whirled to remove 
any air bubbles. Once air bubbles were no longer observed, the final reading on the flask was 
taken. The material's density was computed using Eq. 3, where the volume of the kerosene 
displaced is the difference between the initial and the final readings of the flask. 

Density (g/cm3) = mass of the cement (g)/volume of the kerosene displaced (cm3) [3] 

Figure 10. Le Chatelier’s flask 

The specific gravity and absorption of RBA were determined as per ASTM C128 (64). Initially, a 
1-liter capacity of pycnometer was filled with water up to its calibration capacity and the mass was 
recorded. Next, the pycnometer was partially filled with water and 200 ± 10 g of RBA (in 
saturated-surface-dry conditions, SSD) was introduced into the pycnometer. Subsequently, the 
pycnometer was filled with additional water up to 90% of the pycnometer capacity. The 
pycnometer was then agitated to remove the air bubble at the surface of the water. When no further 
air bubbles were observed, the pycnometer was filled with water up to its capacity, and the mass 
was recorded. Next, the SCBA from the pycnometer was dried at 110±5°C until it reached a 
constant mass. After it reached a constant mass, the sample was allowed to cool for 0.5 hours, and 
the final mass reading was taken. The specific gravity and absorption were computed as per Eq. 4 
and 5, respectively. 

Bulk Specific Gravity = 
 

[4] 

 
Absorption = 𝑥 100 

 
[5] 

where, 

A = mass of oven-dry RBA in air, in grams; 

B = mass of pycnometer filled with water, in grams; 

C = mass of pycnometer with RBA and water to calibration mark, in grams; and 

18 



 

            

 
   

               
             

             
               

                   
               

            
                

                
  

                   

  
        
           
           

           
           

 

    

               
                 

                 
                

             
               
                  

                 
                     

               
                 

                
                 

                 
                 

        

S = mass of SSD RBA added to the pycnometer, in grams. 

4.1.2.5 Chapelle’s Test 

Chappelle’s test method is a chemical method to determine the pozzolanic reactivity of natural and 
artificial pozzolans (65). It is an accelerated method, standardized by the ABNT- Associação 
Brasileria de Normas Técnicas (NBR 15895: 2010) (66), and quantifies the calcium consumption 
associated with the vitreous or amorphous phase of a pozzolanic material (65). For Chapelle’s test, 
one gram of SCBA and two grams of CaO are added to 250ml of distilled water. The mixture is 
then placed at 90±10°C for 16 hours. The consumption of CaO is determined utilizing sucrose 
extraction and titration with hydrochloric acid using phenolphthalein as an indicator. For 
Chapelle’s method, three sets of replicas were performed for each type of SCBA. The results are 
expressed as milligrams of lime (CaO) reacted or fixed per gram of pozzolan and computed using 
Eq. 6. 

( ∗(  )∗ ∗ )
Mg CaO per gram of material = [6] 

∗  

where, 
 

m2 = grams of pozzolanic material = 1g; 
m3 = grams of CaO mixed with pozzolanic material = 2g; 
m4 = grams of CaO in the blank test = 2g; 
v2 = milliliters of HCl 0.1M consumed by the sample solution; 
v3 = milliliters of HCl 0.1M consumed by the blank solution; 

4.1.2.6 Strength Activity Index 

For both SCBAs, pozzolanic activity was determined as per ASTM C311 (67). The control mortar 
mixture was prepared with the specified sand to cement (S/C) and water to cement ratios of 2.75 
and 0.48, respectively. The sand used for the SAI test was a standard graded sand meeting ASTM 
C778 requirements (68). For RBA and PBA mortar mixtures, 20% of the cement (by mass) was 
replaced with the corresponding SCBA material per ASTM C311 requirements. For mixtures with 
SCBAs, the amount of water required was determined such that the same flow within ±5% 
tolerance was obtained compared to control. It should be noted that for each mixture, a total of six 
50 mm (2”) cube specimens were cast. After 24 hours of casting, the cube specimens were removed 
from the molds and were cured in a saturated lime water tank for 28 days. At the end of the curing 
phase, the compressive strength of the mortar cubes was determined as per ASTM C109 standard 
(69). The test setup is presented in Figure 11. The strength activity index was computed as the 
percentage strength of the SCBA admixed test cubes compared to the control cubes. In addition, a 
set of cube specimens were prepared by replacing 20% of cement in the control mixture with inert 
silica sand. This was performed to have a reference for a material with no pozzolanic activity for 
comparative purposes. It should be noted that a minimum of 75% SAI is required to be classified 
as a pozzolan as per ASTM C618 (70). 
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Figure 11. Compressive strength testing setup for 50.8-mm (2-in) mortar cubes. 

4.1.3. Testing of Louisiana SCBA Admixed ECC 
The initial phase of this study focused on the physical and chemical characterization of SCBA 
materials (RBA and PBA). In this following phase, the mechanical properties of ECC mixtures 
with RBA as a sand replacement and PBA as a cement replacement were evaluated. The 
mechanical and physical properties of all the produced ECC mixtures were experimentally 
investigated. Properties evaluated included compressive strength, tensile strength and strain 
capacity, surface resistivity, shrinkage, and coefficient of thermal expansion. 

4.1.3.1 Mixture Proportioning 

Two types of ECC mixtures were prepared: (i) RBA admixed ECC (i.e., class S) with sand partially 
or completely replaced with RBA; and (ii) PBA admixed ECC (i.e., class C) with cement partially 
replaced with PBA. For class S mixtures, the investigated sand replacement levels with RBA were 
0%, 25%, 50%, 75%, and 100% by volume. For class C mixtures, the investigated cement 
replacement levels with PBA were 0%, 40%, 50%, and 60% by mass. Furthermore, for both 
mixtures classes, water to binder ratio (W/B) and fiber content were kept constant at 0.32 and 1.5% 
(volume fraction). For class S mixtures, class F fly ash was utilized as a partial replacement to 
cement. For comparative purposes, the fly ash-to-cement ratio (F/C) ratio was kept constant at 2.2 
for all class S mixtures. For class C mixtures, the sand-to-binder ratio was 0.36 for all mixtures. 
The details of the different mixture proportions are summarized in Tables 4 and 5 for class S and 
class C mixtures, respectively. In summary, a total of five different class S mixtures and four 
different class C ECC mixtures were produced. 

Table 4. Class S ECC mix design proportion by weight. 

Mix ID 

S-0 

S-25 

S-50 

S-75 

Cement 
(kg/m3) 

358.9 

358.9 

358.9 

358.9 

Fly Ash 
(kg/m3) 

789.5 

789.5 

789.5 

789.5 

Water 
(kg/m3) 

367.5 

367.5 

367.5 

367.5 

Sand 
(kg/m3) 

416.2 

312.2 

208.1 

104.1 

RBA 
(kg/m3) 

0 

92.2 

184.3 

276.4 

RBA 
(%)a 

0 

25 

50 

75 

Fibers 
(kg/m3) 

19.5 

19.5 

19.5 

19.5 

HRWR 
(%) b 

0 

0.13 

0.45 

0.80 

Air Content 
(%) 

1.4 

2.9 

3.5 

5.3 

S-100 358.9 789.5 367.5 0 368.6 100 19.5 1.5 5.8 
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a % of sand replacement by volume; b % of HRWR by weight of cement; c % of fiber content by 
volume 

Table 5. Class C ECC mix design proportion by weight. 

Mix 
ID 

C-0 

C-40 

C-50 

Cement 
(kg/m3) 

1271.2 

736.1 

608.1 

PBA 
(kg/m3) 

0.0 

490.8 

608.1 

PBA 
(%)a 

0 

40 

50 

Water 
(kg/m3) 

406.8 

441.6 

389.1 

Sand 
(kg/m3) 

457.6 

441.6 

437.8 

HRWR 
(%) b 

0 

0.6 

1.0 

Vf 

(%)c 

1.5 

1.5 

1.5 

Fibers 
(kg/m3) 

19.5 

19.5 

19.5 

C-60 482.3 723.4 60 385.8 434.1 1.5 1.5 19.5 
a % of cement replacement by mass; b % of HRWR by weight of cement; c % of fiber content by 
volume 

4.1.3.2 Specimen Preparation 

All ECC mixtures produced in this study were mixed in the following steps. Initially, powder 
components (cement, fly ash, sand, and RBA for class S mixtures, cement, PBA, and sand for class 
C mixtures) were mixed at a slow speed (i.e., 60 rpm) in a planetary mixer for three minutes. 
Subsequently, water and HRWR were added within one minute and mixed for three minutes at 
medium speed (i.e., 110 rpm). Finally, PVA fibers were introduced slowly to the wet mix (within 
two minutes) and mixed for an additional five minutes at high speed (i.e., 200 rpm). The mixing 
procedure is illustrated in Figure 12a. After completing the mixing process, three cylindrical 
specimens, six dog-bone shaped specimens, and four prismatic specimens (for shrinkage (length 
change) evaluation) were cast per each ECC mixture. Figure 12b presents the ECC specimens in 
the molds right after casting. After molding, all specimens were sealed with plastic coverings to 
avoid moisture loss. After 24 hours, cylindrical specimens and dog-bone shaped specimens were 
demolded and allowed to cure in a saturated lime water tank, according to ASTM C511 (71). The 
prismatic specimens for shrinkage determination were demolded and cured in saturated lime water 
following the ASTM C157 standard (72). 

Addition of Water Cementitious Mortar Addition of Fiber Fresh ECC Mix 

(a) 
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(b) 
Figure 12. ECC specimen preparation (a) ECC mixing process (b) ECC specimen cast in molds 

4.1.3.3 Compressive Strength Test 

The compressive strength of all ECC materials was determined as per ASTM C39 on 101.6-mm x 
203.2- mm (4-in x 8-in) cylinders (73). It is important to mention that three replicas were evaluated 
for each mixture. The compressive strength was determined at a loading rate of 15MPa/min using 
hydraulic pressure. Figure 13 presents the test setup for the compressive strength test. 

Figure 13. Compressive strength test setup. 

4.1.3.4 Uniaxial Tensile Test 

The tensile performance of all ECC materials was determined as per the recommendation of the 
Japan Society of Civil Engineers (74). The test was conducted at 28 days of curing on dog-bone 
shaped specimens (as shown in Figure 14a). The test was conducted using a 250kN capacity servo-
hydraulic machine where a displacement controlled constant axial load was applied. For all 
specimens, the gage length was kept constant at 80 mm, and one LVDT was attached to each side 
of the specimen to evaluate its deformation. The test setup is presented in Figure 14b. It is 
important to mention that a total of 6 replicas were tested for each mixture. 
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(a) (b) 

Figure 14. Uniaxial tensile test: (a) Dimensions of dog-bone shaped specimen in mm and (b) Uniaxial tensile test setup 

4.1.3.5 Surface Resistivity 

Permeability is the most important factor influencing the durability of concrete materials. A 
permeable concrete allows deleterious substances to enter into the material; thus, deteriorating the 
concrete structure and decreasing its service life. As such, to gain insight into the permeability of 
ECC mixtures, a surface resistivity test as per AASHTO T358 “Standard Method of Test for 
Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration” was 
performed (75). The test method determines the electrical resistivity of the material, which has 
shown to strongly correlate with the chloride ion penetrability of concrete materials. In this 
context, higher surface resistivity indicates a lower chloride ion penetrability and vice versa. It is 
worth mentioning that the surface resistivity is a non-destructive test. As such, the cylinders used 
to evaluate compressive strength were first utilized to measure surface resistivity. A Wenner four-
pin array with a 38 mm spacing was used to measure the surface resistivity. Prior to the surface 
resistivity evaluation, the cylinders were taken out from the lime saturated water tank, and the 
excess water at the surface was removed by using a wet towel. Next, the initial surface resistivity 
measurement was taken at a random location along the center of the longitudinal axis of the 
cylinders, as shown in Figure 15. This location was defined as 0°. Subsequently, the specimens 
were rotated counterclockwise, and readings were taken at 90°, 180°, and 270°. For each specimen, 
a total of eight readings (i.e., two measurements per location) were taken. The average surface 
resistivity from three replicas was then obtained and multiplied by the curing correction factor 
(i.e., 1.1 for saturated lime water curing). The surface resistivity value of each mixture was then 
used to categorize ECC materials' chloride ion penetrability, according to AASHTO T358, as 
shown in Table 6. 
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Figure 15. Surface resistivity test setup. 

Table 6. Chloride ion penetrability (75). 

Chloride Ion Penetrability 
4 in. X 8 in. Cylinder 

(KΩ-cm), a=1.5”* 
6 in. X 12 in. Cylinder 

(KΩ-cm), a=1.5”* 
High <12.0 <9.5 

Moderate 12.0-21.0 9.5-16.5 
Low 21.0-37.0 16.5-29.0 

Very Low 37.0-254.0 29.0-199.0 
Negligible >254.0 >199 

*Note: a= Wenner probe spacing 

4.1.3.6 Shrinkage 

Shrinkage is an important characteristic of concrete materials, which affects dimensional stability. 
When shrinkage is excessive, it can produce cracking, leading to early deterioration of concrete 
structures. Furthermore, shrinkage is a fundamental factor for concrete materials used in repair 
applications as it can produce stresses at the old/new concrete interface leading to debonding and 
failure of the repair. In this study, shrinkage during curing conditions was measured according to 
ASTM C157 (72). This was done by using prismatic specimens measuring 25 mm (1 inch) square 
cross-section and 254 mm (10 inches) in length (72). The test specimens were demolded after 
23±0.5 hours of casting as per ASTM C157 (72). After demolding, specimens were immersed in 
a lime saturated water tank for 30 minutes at 23 ± 2°C, according to ASTM C157 (72). At the end 
of 30 minutes, the initial readings were taken using a digital length comparator, as shown in Figure 
16. Next, the specimens were immersed again in the lime saturated water container. Subsequent 
readings were taken at 7, 14, and 28 days of curing. The relative length change for each specimen 
was computed as the ratio between the reading difference (i.e., reading at the desired age of curing 
and the initial readings) and the gage length, i.e., 250 mm., as shown in Eq. 7 (72). 

  
𝛥𝐿  = 𝑋 100 [7] 

 

where, 

𝛥𝐿  = Length change of specimen at any given curing %; 
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CRD = Difference between the comparator reading of the reference bar and the specimen at any 
given age; and 

G = Gage length (250 mm [10 inch]). 

Figure 16. Digital length comparator with the test specimen. 

4.1.3.7 Crack Width Analysis 

Wide cracks in concrete materials allow for the ingress of deleterious substances into concrete 
structures, which can adversely affect the durability. Unlike regular concrete, ECC materials 
exhibit tight cracks (usually between 60 to 100 𝜇m). As such, structures constructed with ECC 
materials are likely to be more durable than regular concrete, as these tight cracks do not 
significantly increase the permeability of the material and allow self-healing characteristics of 
cementitious materials to be effective. For this reason, the cracking behavior of all ECC mixtures 
produced in this study was studied. Light microscopy was used to collect images of residual cracks 
in the dog-bone shaped specimens after completing the uniaxial tensile test. The microscope 
utilized in this study was a Zeiss SteREO Lumar V12 Microscope, as presented in Figure 17. A 
minimum of three specimens was evaluated for each material. The crack width was measured from 
the collected images by using digital image analysis software. 
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Figure 17. Zeiss SteREO Lumar V12 Microscope 

4.1.3.8 Slant Shear Test (SST) 

For materials to be used for the repair of concrete structures, it is essential to determine the 
material's bond strength with a concrete substrate. The bond strength of SCBA admixed ECC 
materials were determined following a similar procedure to that of ASTM C882 standard. The 
bond strength was determined using 4” x 8” cylinders with a substrate layer composed of regular 
concrete and a top layer composed of SCBA admixed ECC mixture, as shown in Figure 18a. The 
concrete substrate was cast by filling 50% of the cylinder volume and tilting it at a 30° angle from 
the horizontal using a specimen holder, as shown in Figure 18b. Right after casting, the cylinders 
were covered with a plastic lid to prevent moisture loss. After 24 hours, the cylinders with the 
hardened concrete substrate were placed in saturated lime water for 28 days (without removing the 
concrete substrate from the molds). The concrete material used as a substrate was a Louisiana 
DOTD Type-B pavement mixture. This concrete material had a W/C ratio of 0.45 and a cement 
content of 297 kg/m3

. Mixture design details are presented in Table 7. After allowing the concrete 
substrate to cure for 28 days in saturated lime water, SCBA admixed ECC mixtures were poured 
on top of the concrete substrate to fill the remaining half-section of the cylinders. After 24 hours 
of casting, the cylinders were demolded and placed in saturated lime water for 28 days. At the end 
of the curing phase, the specimens were tested for compressive strength as per ASTM C39 to 
determine the composite cylinder's (presented in Figure 18c) maximum load at failure. It is 
important to note that only one mixture was utilized to test for bond strength for each class of ECC 
mixture (i.e., class S and class C). These materials were the best performing for each ECC mixture 
class. The bond strength was calculated by using Eq. 8. 

𝜏  = 
 
sin(𝛼) ∗ cos(𝛼) [8] 
 

where: 𝜏 = shear stress, P = ultimate load, A = cross sectional area, and 𝛼 = angle of the bonded 
interface from horizontal (30°). 

Table 7. Mix proportion of concrete mixtures used in SST 

Target Compressive 
Strength MPa (psi) 

Cement 
(kg/m3) 

Coarse Aggregate 
(kg/m3) 

Fine Aggregate 
(kg/m3) 

Water (kg/m3) 

27.6 (4000) 296.7 1124.1 744.3 133.5 
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(a) (b) (c) 
Figure 18. Slant shear test: (a) Cylinder dimension (b) Specimen in a mold (c) Composite cylinder with two material 
layers 

4.1.3.9 Coefficient of Thermal Expansion 

The coefficient of thermal expansion (CTE) of materials to be used for repair applications of 
concrete structures is of great relevance since compatibility between the repair material, and the 
concrete substrate minimizes the possibility of debonding failure. Furthermore, the CTE is also a 
relevant property regarding the potential occurrence of cracking in concrete materials subjected to 
large temperature fluctuations under restrained conditions. In this study, the CTE was determined 
as per ASTM C531 using the mortar bars (76). The specimens used to determine the CTE were 
dry specimens (i.e., they were placed at room temperature, i.e., 23 ± 2°C). The dry specimen’s 
length was measured using the digital length comparator, as shown in Figure 16. Subsequently, 
the specimens were placed at 100°C for at least 16 hours. After 16 hours, the specimens were 
removed from the oven to measure the length of the specimens. Next, the specimens were again 
placed at room temperature for 16 hours, and the length was measured. This process (23°C to 
100°C to 23°C) was repeated until the specimen reached a constant length at both temperatures. 
The CTE was then determined by using Eq. 9. It is worth mentioning that the results from four 
replicas for each mixture were averaged and reported in this study. 

𝐶 = (𝐴 − 𝐵 − 𝑌)/𝑇(𝑌 − 𝑋) [9] 

A = length of the bar, including studs, at elevated temperature, in. (mm), 
B = length of stud expansion, in. (mm), = X × T × k (where k is the linear coefficient of thermal 
expansion per °F (°C) of the studs); K= 7.2 × 10-6 per °F (4 × 10-6 per °C); T= 100°C. 
Y = length of the bar, including studs, at a lower temperature, in. (mm), 
T = temperature change, °F (°C) and 
X = length of the two studs at a lower temperature, in. (mm). 

4.2. ECC Materials Produced with Ecuador SCBA 

4.2.1. Materials 
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4.2.1.1 Ecuador Raw SCBA 

In addition to the investigation of RBA properties, this study also characterized raw SCBA 
produced in the Ingenio San Carlos sugar mill located in Guayas, Ecuador. The raw SCBA was 
produced in a similar method, as described in section 4.1.1.1. Figure 19a presents the Ecuador raw 
SCBA used as a substitute of silica sand in ECC mixtures. The specific gravity of the produced 
SCBA was 2.19. The raw SCBA produced in Ecuador was labeled as EBA. The produced EBA 
was thoroughly characterized by SEM-EDS, X-ray diffraction (XRD), and laser diffraction particle 
size analysis. In addition, the pozzolanic activity of EBA was evaluated by the Strength Activity 
Index (SAI) method, according to ASTM C311. The EBA was used as a partial and complete 
replacement to river sand in ECC mixtures. The ECC mixtures using EBA as a substitute to silica 
sand were produced in Ecuador using readily available ingredients in the country. These mixtures 
are referred to as class S-E mixtures. 

(a) (b) (c) 
Figure 19. Materials used in ECC mixtures: (a) Raw SCBA produced in Ecuador, i.e., EBA (b) Zeolite (c) PP Fiber 

4.2.1.2 Other Ingredients 

The materials used in the production of class S-E ECC mixtures were Type I OPC (specific gravity 
of 3.15), zeolite (specific gravity of 2.17) as a partial replacement to cement, fine river sand 
(specific gravity of 2.64), water, high-range water-reducing admixture (HRWR), and 
Polypropylene (PP) fibers. The particle size distribution of zeolite and river sand determined by 
laser diffraction particle size analysis and sieve test are presented in Figures 20a and 20b, 
respectively. The zeolite exhibited a mean particle size of 47.5 𝜇m (with maximum nominal 
particle size of 227.5 𝜇m). Furthermore, the fine river sand exhibited a maximum particle size of 
2360 𝜇m. 
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 Mix ID   Cement 
3)(kg/m   

 Zeolite 
3)(kg/m   

 Water 
3)(kg/m   

 Sand 
3)(kg/m   

RBA  
3)(kg/m   

RBA  
 (%)a 

 HRWR 
 b (%)  

 Vf 
 (%)c 

 S-E-0  356.4  784.0  364.9  366.4  0  0 0   2.2 
 S-E-25  356.4  784.0  364.9  274.8  83.4  25  0.13  2.2 
 S-E-50  356.4  784.0  364.9  183.2  166.9  50  0.45  2.2 
 S-E-75  356.4  784.0  364.9  91.59  250.3  75  0.80  2.2 
 S-E-100  356.4  784.0  364.9  0  333.7  100  1.5  2.2 
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Figure 20. Cumulative passing particle size distribution: (a) Zeolite particle size distribution (b) Fine river sand gradation 

The PP fibers utilized in ECC mixtures were provided by SIKA Ecuador. The Sika-fibers have a 
length of 19 mm, a Young’s modulus of 14.7 GPa, a maximum elongation of 20-30%, and a 
specific gravity of 0.91. Figures 19b and 19c show images of the Zeolite and PP fibers used in 
ECC mixtures, respectively. 

4.2.2. Testing of Ecuador SCBA Admixed ECC 
4.2.2.1 Mixture Proportioning and Specimen Preparation 

The raw SCBA produced in Ecuador (EBA) was used as a substitution to fine river sand to produce 
class S-E mixtures. To investigate the influence of sand replacement with EBA on the properties 
of ECC, a total of five ECC mixtures were prepared. The dosages of sand replacement investigated 
were 0%, 25%, 50%, 75%, and 100% by volume. The zeolite-to-cement ratio (Z/C), water-to-
binder ratio (W/B), and the fiber content of all EBA admixed ECC mixtures were kept constant at 
2.2 (by weight), 0.32 (by weight), and 2.2% (volume fraction), respectively. The details of the 
ECC mixture proportions are illustrated in Table 8. 

Table 8. EBA admixed ECC mixture proportions 

a % of sand replacement by volume; b % of HRWR by weight of cement; c % of fiber content by volume 

The ECC mixtures were produced in a planetary mixture by following the same procedure, as 
explained in section 4.3.2. At the end of the mixing process, three cubes and three beams were cast 
for each mixture for 7- and 28-day testing. All the specimens were covered with plastic and left in 
the mixing room (specimens were covered to prevent moisture loss) for 24 hours before 
demolding. After demolding, all specimens were placed in a lime saturated water tank, according 
to ASTM C192 (77). 
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4.2.2.2 Compressive Strength 

The compressive strength of the EBA admixed ECC mixtures were assessed according to ASTM 
C109 (78) on 50 x 50 x 50 mm cube specimens. For each mixture, three specimens were tested at 
7 and 28 days of curing, utilizing hydraulic pressure with a constant loading rate of 0.25 MPa/s. 

4.2.2.3 Flexural Strength 

A test method as per ASTM C293 (79) was performed to determine the modulus of rupture of 
specimens. For each mixture, three 76.2 x 35.1 x 300 mm beams were cast and cured as per ASTM 
C192 (80) to be evaluated at 28 days of curing. A simple beam with center-point loading was used 
to determine the flexural strength. 
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5. ANALYSIS AND FINDINGS 

5.1. Louisiana SCBA Characterization 

5.1.1. Microstructure and Chemical Composition 
Figure 21a shows the RBA used as a substitute to silica sand in class S mixtures, and Figure 21b 
presents its morphology obtained from backscattered electron SEM (BSE-SEM) imaging. RBA 
particles were found to exhibit a variety of shapes and sizes (i.e., fibrous particles, irregular porous 
particles, spherical particles, and prismatic particles). It is worth mentioning that the SCBA in 
sugar mills is produced from the uncontrolled burning of SBF, and therefore, a high temperature 
gradient exists within the sugar mill boilers. As such, fibrous particles observed in the BSE-SEM 
image occurred likely due to SBF's incomplete combustion at low burning temperature zones 
within the boiler. Moreover, prismatic particles observed, which are typically associated with 
crystalline silica, did likely occur due to SBF's calcination at high temperature zones (i.e., usually 
above 700°C) (35). However, the presence of prismatic particles in RBA may also be partially 
credited to soil contamination (i.e., soil adhered to SBF during harvesting). A previous study 
revealed that spherical particles in SCBA are formed due to the melting of silica at high 
temperatures (35). As such, the spherical particles in RBA are credited to the SBF portion, 
experiencing the highest temperatures at the sugar mill boiler. Finally, in accordance with previous 
literature, it is believed that the irregular porous particles observed in RBA are rich in silica (81). 
It should be noted that RBA's black color is indicative of the high carbon content of this material. 

Figure 21c presents the PBA used as a substitute to cement in ECC mixtures, and Figure 21d 
presents its BSE-SEM image. As mentioned earlier, PBA was produced by burning RBA at 450°C. 
A distinctive effect of burning on PBA is observed from its appearance the SCBA changed from 
black to brown color. This change indicates the removal of a significant amount of carbon from 
the material. Furthermore, residual unburnt fibers observed in RBA were burned during the post-
processing phase. This in turn, resulted in the absence of fiber-like particles in PBA's BSE-SEM 
image. Similar to RBA, PBA consisted of irregular prismatic and porous particles. Furthermore, 
as in RBA, the prismatic particles are attributed to crystalline silica, while the irregular particles 
are associated with amorphous silica. It is worth mentioning that the main differences between 
these two materials, in terms of morphology, were the presence/absence of unburnt fibrous 
particles and particle size. 
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(a) (b) 

(c) (d) 

Figure 21. SCBAs’ characterization (a) RBA (b) BSE-SEM image of RBA (c) PBA (d) BSE-SEM image of PBA 

To obtain insight into the chemical composition of both SCBAs, EDS spectra were collected 
during the SEM imaging process. The oxide composition of both SCBAs is presented in Table 9a. 
It is observed that RBA mainly consists of silicon dioxide (SiO2) and carbon (presented as CO2 

equivalent in Table 9a). Regarding PBA, a significant amount of SiO2 (i.e., 70.1%) and a minimal 
amount of carbon (i.e., 6.8%) were present. The sum of the pozzolanic component 
(SiO2+Al2O3+Fe2O3) for RBA and PBA was 52.5% and 83.9%, respectively. While RBA met 
ASTM C618 (82) minimum pozzolanic requirement (i.e., 50%) to be classified as Class C 
pozzolan, PBA met the requirement (i.e., 70%) to be classified as Class F and N pozzolan. 
Moreover, as per ASTM C618, the maximum allowable limit for SO3 is 4% for class N pozzolan 
and 5% for class F and C pozzolan, which was met by both SCBAs (82). 

In order to verify the EDS results obtained for both SCBAs, XRF analysis was conducted. In 
contrast to the EDS system, the XRF equipment cannot detect elements lighter than magnesium. 
As such, the detection of carbon is not possible. For the XRF analysis, 0.6 grams of powdered 
samples were fused with a mix of Li-iodide, Li-metaborate, and Li-tetraborate at 1000°C in a 
Clarisse LENeo fluxer to glass beads. The XRF results for both SCBAs are presented in Table 9b. 
For RBA, the total pozzolanic component reported from the XRF analysis (i.e., 88.75%) was much 
higher than that reported from the EDS analysis. This was attributed to the absence of carbon 
detectiont in the XRF analysis. In contrast, for PBA, the XRF analysis showed a lower pozzolanic 
component (i.e., 72.62%) compared to the EDS analysis results. Yet, PBA continued to meet the 
minimum pozzolanic component requirement (i.e., 70%) to be classified as Class F and N 
pozzolan, according to ASTM C618. 

Table 9. SCBA oxide composition (by weight) (a) EDS analysis (b) XRF 

(a) 

Material CaO SiO2 Al2O3 Fe2O3 K2O Na2O MgO SO3 C (as CO2 

equivalent 
SiO2+ Al2O3+ 

Fe2O3 

ASTM C618 
Requirement 

RBA(%) 3.8 42.8 5.5 4.2 3.6 0.1 0.5 0.1 38.1 52.5 Class C 
Pozzolan 

PBA (%) 3.6 70.1 8.2 5.6 4.1 0.0 0.4 0.0 6.8 83.9 Class F and 
N Pozzolan 
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(b) 

Material CaO SiO2 Al2O3 Fe2O3 K2O Na2O MgO SO3 SiO2+ Al2O3+ 
Fe2O3 

ASTM C618 
Requirement 

RBA(%) 3.1 78.6 7.6 2.5 4.5 0.7 1.2 0.0 88.7 Class C 
Pozzolan 

PBA (%) 5.1 63.5 6.5 2.6 4.1 0.6 1.5 0.2 72.6 Class F and N 
Pozzolan 

5.1.2. Particle Size Analysis 
The particle size distribution of RBA, unground PBA, and ground PBA, obtained from Laser 
diffraction particle size analysis, is presented in Figure 22. Furthermore, Table 10 presents the 
mean, median, D10, D25, D50, D75, and D90 particle size. It is observed that the mean particle 
size of RBA is 256 𝜇m, indicating that the RBA is much finer than the fine river sand (i.e., mean 
particle size of 474 𝜇m) used in this study. Furthermore, the D90 particle size of RBA was 539 𝜇m, 
while for the fine river sand, it was 786 𝜇m. As mentioned earlier, the use of aggregate with fine 
particle size is preferable in ECC mixtures to enhance the PSH behavior. Consequently, the fine 
particle size of RBA makes this material promising for sand replacement in ECC mixtures. 
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Figure 22. SCBAs particle size analysis: (a) Particle size frequency distribution and (b) Cumulative particle size 
distribution. 

In contrast to RBA, un-ground PBA particles were much finer; thus, highlighting a significant 
effect of post burning on reducing the particle size. This phenomenon is credited to the calcination 
of coarse fibrous impurities observed in RBA during the post burning treatment. In the case of 
ground PBA, a significant effect of grinding was observed on the particle size distribution. For 
instance, the mean particle size of un-ground PBA was 44 𝜇m, which was reduced to 28 𝜇m for 
ground PBA. This was mainly attributed to the effectiveness of grinding in eliminating the coarser 
particles, i.e., D90 size for un-ground PBA was 120 𝜇m and 62 𝜇m for ground PBA. It should be 
noted that the particle size distribution of the ground PBA was similar to that of fly ash. The fly 
ash exhibited a mean particle size of 22.7 𝜇m and is presented in Figure 6. 

Table 10. Size distribution for ground samples. 

ID 
Mean 
(𝜇m) 

Median 
(𝜇m) 

D10 
(𝜇m) 

D25 
(𝜇m) 

D50 
(𝜇m) 

D75 
(𝜇m) 

D90 
(𝜇m) 
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RBA 
Un-ground PBA 

256 
44 

171 
27 

22 
2 

67 
9 

171 
27 

341 
61 

539 
120 

Ground PBA 28 24 2 8 24 45 62 

5.1.3. X-ray Diffraction (XRD) 
Figures 23a and 23b present the XRD pattern of RBA and PBA, respectively. For both SCBAs, a 
characteristic quartz peak is present, which is indicative of the presence of crystalline silica in the 
form of quartz. It is also important to note that both SCBAs exhibited very similar XRD patterns. 
The patterns observed included an amorphous bump between 2θ angles of 10° and 40° and a 
dominant peak at a 2θ angle of 26.6°. 
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Figure 23. X-ray diffraction patterns: (a) RBA and (b) PBA 

The different phases present in SCBA materials were quantified by using Rietveld analysis 
conducted using Highscore plus software. It is important to mention that the quartz powder was 
used as an amorphous standard. The analysis results yielded 52.9% of amorphous component, 
38.9% of quartz, and 5.5% of albite for RBA and 65.3% of the amorphous component, 27.1% of 
quartz, and 5.4% of albite for PBA. For both SCBA materials, the quartz content may be attributed 
to the crystallization of amorphous silica during calcination of SBF at the sugar mill and the 
presence of soil adhered to the SBF during sugarcane harvest. In contrast, the presence of an 
amorphous phase can be attributed to the presence of amorphous silica and/or unburnt SBF. 

5.1.4. Density, Specific Gravity, and Absorption 
The specific gravity and absorption of RBA determined as per ASTM C128 was 2.32 and 2.0%, 
respectively. In contrast, the density and absorption of the fine river sand was 2.62 and 0.4%, 
respectively. This shows that RBA is lighter than the fine river sand and has a greater water 
absorption capacity. In the case of PBA, the density as determined per ASTM C188 was 2519 
kg/m3. It is worth mentioning that the reported density is the average of two readings and the 
standard deviation was 27 kg/m3, which was within 30 kg/m3 permitted standard deviation as per 
ASTM C 188. This indicates that PBA density is much lower than that of cement (i.e., the density 
of 3150 kg/ m3); yet, comparable to that of fly ash (i.e., a specific gravity of 2.29). 
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5.1.5. Chapelle’s Test 
The summary of the pozzolanic activity test, as per Chapelle’s method, is presented in Table 11. 
From Table 11, a clear distinction in the pozzolanic activity for RBA and PBA can be observed, 
While RBA exhibited a calcium consumption of 201.5 mg/g of RBA, PBA exhibited a Chapelle 
activity (i.e., CaO consumption) of 309.9 mg/ g of PBA. In addition, this result is in line with the 
previous studies, which exhibited higher reactivity for post-processed SCBA material (18, 83). 

Table 11. Chapelle’s test results. 

Material 

RBA 

CaO consumption 
(mg/g) 
201.5 

Standard Deviation 
(mg/g) 
74.1 

Coefficient of Variation 
(%) 
36.8 

PBA 309.9 181.1 58.4 

5.1.6. Strength Activity Index (SAI) 
The compressive strength results of mortar cubes (Control, RBA, PBA, and sand) and 
corresponding SAI values are presented in Figures 24a and 24b, respectively. It is observed that 
replacing cement with either of the SCBAs reduced the compressive strength significantly. For 
instance, the control mixture's compressive strength was 42.7 MPa, which was reduced to 30.8 
MPa for RBA mixtures and 33.7 MPa for PBA mixtures. Nevertheless, for both SCBA admixed 
mortars, the compressive strength was higher than the sand mixture (i.e., compressive strength was 
27.23 MPa). 

From Figure 24b, the effect of post-processing of RBA to produce PBA is clearly observed in the 
SAI results. For RBA, the SAI value was 72.1%, which increased to 78.8% for PBA. This result 
agrees with the pozzolanic component reported from EDS analysis, which was higher for PBA. 
Besides, the particle size of PBA was finer than RBA, indicating that PBA may exhibit an 
enhanced reactivity and act as a filler material. As such, the increase in SAI for PBA may be 
attributed to the enhanced pozzolanic activity and/or filler effect. Even though the SAI for RBA 
was low, it exhibited higher SAI than the sand admixed mortar cubes (i.e., 63.7%). This result 
suggests that RBA is likely to exhibit a minor pozzolanic activity and/or filler effect. However, 
this was not sufficient for RBA to meet the minimum SAI requirement of 75% to be classified as 
a pozzolan (84). While RBA did not meet the SAI requirement, PBA did. As such, PBA presents 
the potential to be used as an SCM in ECC mixtures. 
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Figure 24. (a). Compressive strength (b) Strength activity index for RBA and PBA 

5.2. Ecuador SCBA Characterization 

5.2.1. Microstructure and Chemical Composition 
The SEM image of raw SCBA produced in Ecuador (EBA) was obtained using an FEI- Inspect 
and Phenom 1255 Scanning Electron Microscope (SEM) operated at 10 kV. EDS/EBSD detectors 
were utilized to investigate the morphology and elemental composition of EBA. Figure 25 presents 
a backscattered electron images of SCBA, with EDS analysis of particle labeled A (shown in 
Figure 25b). From the SEM images it can be observed that EBA consists of a combination of 
particles with different shapes and sizes. The majority of the observed particles were porous 
particles. Figure 25c presents a magnified image of the particle labeled as A (in Figure 25a). The 
presence of porous particles is a consequence of the calcination process in sugar mills, during 
which the organic material is burned, leaving behind mainly porous-amorphous particles rich in 
silica, as showed by the EDS analysis. Particles with a defined shape like prism are also observed 
(particle B in Fig 25d). They could correspond to crystalline phases. 

(a) (b) 
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(c) (d) 
Figure 25. BSE-SEM images of EBA (a) General view with EDS analysis of particle A, (b) EDS spectra for particle A, (c) 
details of porous particles, and (d) Different shapes particles with a prismatic one 

5.2.2. XRD and Particle Size Analysis 
XRD analysis was performed by using Co radiation at 30 mA and 45 kV, with a step size of 0.05 
in the range of 5° to 80° 2𝜃. Figure 26a presents the XRD pattern of raw SCBA. The quantitative 
XRD analysis of SCBA samples reported the presence of 46.1 % of amorphous component, 15.7% 
of quartz, Anorthite 9.1%, Graphite 7.2%, and 21.9% of Albite in EBA. Furthermore, the particle 
size distribution of EBA obtained from Mastersizer 2000 Laser Diffraction Particle Size Analyzer 
is presented in Figure 26b. From Figure 26b, it is observed that EBA consists of finer particles in 
comparison to that of silica sand. For instance, the mean particle size of raw SCBA was 248 𝜇m 
(maximum nominal particle size of 618 𝜇m), and the mean particle size for river sand was 992 
𝜇m. It is worth mentioning that the particle size of EBA was similar to RBA (i.e., mean particle 
size of 256 𝜇m) 
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Figure 26. EBA characterization: (a) XRD pattern and (b) Particle Size distribution 

5.2.3. Strength Activity Index (SAI) 
The compressive strength and corresponding SAI for EBA is presented in Figure 27a and 27b, 
respectively. It is observed that replacing cement with EBA reduced the compressive strength. For 
instance, the compressive strength for the control mixture was 43.33 MPa at 28 days of curing, 
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which reduced to 39.47 MPa for the EBA mixture. However, this value was significantly higher 
than the compressive strength for sand mixtures (i.e., the compressive strength of 29.94 MPa). The 
corresponding SAI value for EBA was 84.4% and 91.1% at 7 and 28 days of curing, respectively. 
EBA met the ASTM requirement for SAI to be classified as a pozzolan, which may be attributed 
to the high silica content observed in Figure 25b. It is worth mentioning that the SAI exhibited by 
EBA is significantly higher than the RBA’s SAI. This indicates that different sources of SCBA 
can significantly influence the pozzolanic properties of raw SCBA. Nevertheless, this difference 
may also be attributed to the burning process of the SBF in the sugar mill. 
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Figure 27. (a) Compressive strength and (b) Strength activity index for EBA 

5.3. Testing of Louisiana SCBA Admixed ECC Mixtures 

5.3.1. Compressive Strength 
5.3.1.1 Class S Mixtures 

The compressive strength test results for class S mixtures are presented in Figure 28a. In general, 
a negative trend in compressive strength with the increase in RBA was observed. However, the 
decrease in compressive strength was small. For instance, relative to the control mixture (with 33.6 
MPa compressive strength), the maximum decrease observed was 11.0% (i.e., 29.9 MPa) for the 
ECC mixture using 75% of RBA as a substitute to silica sand (S-75). For the other mixtures, the 
reductions in compressive strength relative to the control mix were 0.4% for S-25 (i.e., 33.2 MPa), 
5.7% for S-50 (i.e., 31.6 MPa), and 10.4% for S-100 (i.e., 30.1 MPa). An Analysis of Variance 
(ANOVA) was conducted to determine if the differences in the average compressive strength for 
class S mixtures were significant. The statistical analysis conducted at a significance level of 0.05 
(presented in Appendix A Table A1) showed a significant difference in mixtures' compressive 
strength (i.e., p-value =0.0006). Furthermore, a Tukey pairwise comparison (presented in 
Appendix A Figure A1) showed that differences between the control ECC mixture and ECC 
mixtures using RBA at 75 and 100% replacement level, mix combination of S-25 and S-75, and 
mix combination of S-25 and S-100 were statistically significant. 

It is worth mentioning that the increase in the RBA content reduced the workability of fresh 
mixtures. As such, HRWR dosage was increased proportionally to achieve good workability. It is 
well documented in the previous literature that the increase in HRWR dosage directly influences 
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air content (i.e., air content increases with the increase in HRWR dosage) (85, 86). Due to the 
increase in HRWR dosage, the air content reported in Table 4 shows an increasing trend with the 
increase in RBA content. For instance, the air content for control mixtures was 1.4%, which 
increased to 5.8% for S-100. As per the ACI report, an increase in 1% of air content can decrease 
compressive strength by approximately 5% (87). As such, for 1.5%, 2.1%, 3.9%, and 4.4% 
increase in air content for S-25, S-50, S-75, and S-100, the expected reduction in compressive 
strength was approximately 7.5, 10.5, 19.5, and 22%, respectively. However, the actual decrease 
in the compressive strength reported above was much lower than the expected decrease. This may 
be attributed to RBA's pozzolanic and/or filler effect, which improved the pore structure and 
mitigated the reduction in compressive strength. 
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Figure 28. Compressive strength of ECC cylinders (a) Class S mixtures (b) Class C mixtures 

5.3.1.2 Class C Mixtures 

The compressive strength test results for class C mixtures are presented in Figure 28b. A significant 
decrease in compressive strength with the increase in PBA content is observed for class C mixtures. 
In comparison to the control mixture (with compressive strength of 63.4 MPa), the decrease in 
strength for C-40, C-50, and C-60 was 27.9% (i.e., 45.7 MPa), 31.2% (i.e., 43.6 MPa), and 39.1% 
(i.e., 38.6 MPa), respectively. As per ANOVA (presented in Appendix A Table A2), a significant 
difference in the compressive strength of class C mixtures was encountered (p-value <0.0001). 
Moreover, as per Tukey pairwise comparison, the differences in compressive strength between all 
pairwise comparisons, except C-40 compared to C-50, were statistically significant. 

From the EDS and XRD analysis, it is evident that PBA has a substantial amount of amorphous 
SiO2; and, therefore, were likely to exhibit some pozzolanic activity. However, while the hydration 
reaction occurs as soon as the water is added to the cement, the pozzolanic reaction occurs at a 
relatively later age. As such, since the cylinders were tested at 28 days of curing, it is likely that 
the pozzolanic reaction of PBA did not significantly contribute to the strength of the ECC mixture. 
It is worth mentioning that the pozzolanic reaction occurs when calcium hydroxide (CH), formed 
as a by-product of the cement hydration reaction, reacts with amorphous SiO2 present in the 
pozzolanic materials to produce calcium silicate hydrate (CSH). CSH enhances the pore structure 
and contributes to the strength of the mixture. Apart from the pozzolanic effect, the unreacted 
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particles can remain in the matrix as a filler and further contribute to pore structure refinement. As 
such, at a later age of curing, PBA-admixed mixtures are expected to result in higher compressive 
strength. To this end, future studies should be conducted to evaluate the compressive strength of 
PBA admixed ECC mixtures at various curing ages beyond 28 days. 

It is worth mentioning that all ECC mixtures (class S and C mixtures) have a compressive strength 
exceeding that of normal concrete (i.e., 30 MPa). In addition, all of the mixtures met the LaDOTD 
minimum 28-day compressive strength (i.e., 4000 psi ≈ 27.6 MPa) requirement for concrete 
materials to be used for pavement construction and repair. 

5.3.2. Density of Hardened ECC Mixtures 

Figures 29a and 29b present the hardened density of all class S and class C ECC materials. As it 
can be observed, a progressive decrease in hardened density with the increase in SCBA content 
occurred. For instance, the density for class S control mixture (S-0) was 1917 kg/m3, which 
decreased to 1771 kg/m3 for S-100 (i.e., a decrease of 7.6%). Similarly, for the class C control 
mixture, the density was 2092 kg/m3, which decreased to 1912 kg/m3 for C-60 (i.e., a decrease of 
8.6%). For class S mixtures, the density reduction occurred since RBA is lighter than the fine river 
sand replaced. In addition, the increase in air content reported in Table 4 was also a contributing 
factor to the decrease in density. For class C mixtures, the decrease in density was credited to the 
lower specific gravity of PBA (i.e., 2.5) in comparison to that of cement (i.e., 3.1). It is relevant to 
note that the densities of all the ECC materials evaluated were lower than the density of 
conventional concrete (i.e., 2400 kg/m3). This, in turn, highlights the higher strength to weight 
ratio of these composites in contrast to conventional concrete. 
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Figure 29. Density of hardened ECC material: (a) RBA-ECC mixtures (b) PBA-ECC mixtures 

5.3.3. Tensile Properties 
5.3.3.1 Class S Mixtures 

The tensile stress-strain curves for all class S mixtures are presented in Figure 30a-e. It is worth 
mentioning that Figure 30a-e presents the tensile stress-strain curves for all six replicas of each 
mixture. As it is observed, all class S mixtures exhibited PSH behavior after first cracking (i.e., 
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first peak), producing significant amounts of deformation with an increase in load-carrying 
capacity. 

The average first-cracking strength and tensile strength are presented in Figures 31a. Furthermore, 
the average tensile strain capacity at peak tensile stress is presented in Figure 31b. The tensile 
strength of all RBA admixed mixtures exhibited a higher value than the control ECC. Relative to 
the control mixture (with a tensile strength of 3.73 MPa), the highest increase in tensile strength 
was 22.3% (i.e., 4.56 MPa) for S-25. Moreover, for S-50, S-75, and S-100, the tensile strength 
incremented by 5.1% (i.e., 3.92 MPa), 7.7% (i.e., 4.02 MPa), and 8.5% (i.e., 4.05 MPa) relative to 
control. As per ANOVA (presented in Appendix B Table B1), statistically, significant differences 
were encountered between the mixtures' average tensile strength (p-value=0.0099). Furthermore, 
as per Tukey pairwise comparison, the tensile strength differences between S-25 and control (i.e., 
S-0), and S-25 and S-50 were found to be statistically significant. 

It is worth mentioning that the tensile strength of ECC mixtures is determined by both the frictional 
bond (𝜏 , influenced by the fiber/matrix interfacial transition zone stiffness and particle packing 
density) (57) and the chemical bond between the fiber and the matrix. Due to the presence of 
hydroxyl groups (-OH) in PVA fibers, they are hydrophilic in nature. As such, at the interfacial 
transition zone (ITZ), a thin layer of metal hydroxide (usually Ca(OH)2) is formed, resulting in a 
strong chemical bond (𝐺 ) (26). A previous study revealed that the presence of carbon in the matrix 
tends to coat PVA fibers and weaken the chemical and frictional bond (44). From the EDS analysis 
reported in Table 9a, it is evident that RBA has significant amounts of carbon. As such, it is 
believed that an increase in RBA can produce a reduction in the chemical and frictional bond, 
which in turn eases fiber pullout without fiber rupture. Furthermore, the increase in air content 
reported in Table 4 is also a factor that should diminish the fiber/matrix interaction; thus, 
contributing to the decrease of the tensile strength. However, it is hypothesized that RBA's filler 
and/or pozzolanic effect resulted in a net improvement in the fiber/matrix frictional bond, which 
outweighed the aforementioned phenomena; thus, resulting in the overall increase in the tensile 
strength of RBA admixed ECC mixtures. 
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Figure 30. Tensile stress - strain curves for: (a) S-0, (b) S-25, (c) S-50, (d) S-75, and (e) S-100 

Figure 31b presents the average tensile strain capacity of class S mixtures. A progressive 
enhancement in the tensile strain capacity with the increase in sand replacement level with RBA 
is observed. Relative to the control mixture (with a tensile strain capacity of 1.04%), the increase 
in tensile strain capacity for S-25, S-50, S-75, and S-100 were 139% (i.e., 2.49% strain capacity), 
99% (i.e., 2.07% strain capacity), 182% (i.e., 2.94% strain capacity), and 311% (i.e., 4.28% strain 
capacity), respectively. The ANOVA presented in Appendix B Table B2 showed significant 
differences between the tensile strain capacities (i.e., p-value = 0.0311) of class C mixtures. 
Furthermore, the Tukey pairwise comparison indicated that the only significant difference 
encountered was between S-0 and S-100. 

The increase in tensile strain capacity of RBA admixed mixtures are attributed to different 
phenomena, including the decrease in matrix toughness (𝐽 ), the increase in complementary 
energy ( 𝐽  ), and an enhancement in fiber distribution. From previous studies, it is evident that the 
increase in the aggregate particle size increases the fracture path's tortuosity; thus, resulting in 
higher matrix fracture toughness (88, 89). From the particle size analysis presented in Table 10, it 
can be seen that RBA has a much finer particle size compared to the fine river sand used. As such, 
𝐽  probably tends to decrease with the increase in RBA content; thus, supporting an increment in 
the PSH energy index (i.e., 𝐽  /𝐽 ). Furthermore, the increase in air content increases the number 
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of voids in the matrix, which can be critical flaws in the matrix. Air voids disrupt the matrix's 
continuity and can result in the initiation cracks at a relatively low stresses, leading to the 
enhancement in tensile ductility. It is worth mentioning that a positive relationship is observed 
between the air content and tensile ductility of class S mixtures. Apart from the particle size of 
RBA and air content, the potential carbon coating effect of RBA on PVA fibers, as discussed 
earlier, can have a significant influence on the tensile ductility of ECC mixtures. A decrease in the 
chemical bond due to carbon coating can lead to an increase in 𝐽  ; thus, enhancing the tensile 
ductility. As such, it is hypothesized that the decrease in the chemical bond has a relevant effect in 
enhancing the tensile ductility. Lastly, from a previous study, it is evident that the fiber distribution 
significantly affects the tensile ductility (90) as fiber clumping results in lower effective fiber 
volume (Vf), leading to lower 𝜎  and 𝐽 . In ECC mixtures, it is recommended to use aggregate 
smaller than the average fiber spacing to avoid fiber clumping. Since RBA is finer than the river 
sand, it is likely that with the increase in the RBA content, a more uniform fiber distribution state 
was achieved; thus, leading to improved ductility of the mixtures. This may also be a factor in the 
enhancement in the tensile strength observed for mixtures containing RBA. 
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Figure 31. Uniaxial tensile test results: (a) First-cracking strength and tensile strength and (b) Strain at peak strength 

5.3.3.2 Class C Mixtures 

The tensile stress-strain curves for all class C mixtures produced in this study are presented in 
Figures 32a-d. It is observed that the mixtures did not exhibit a robust pseudo-strain hardening 
behavior. In fact, some specimens exhibited behavior similar to that of conventional FRC where 
the single crack localized failure occurred. From the tensile stress-strain curve for C-40 (Figure 
32b), it is observed that one of the specimens exhibited a significantly different tensile-strain 
behavior (i.e., very low first-cracking and tensile strength as well as a relatively higher strain 
capacity) than all other specimens. As such, this specimen was considered as an outlier and was 
not considered for the computation of the average first-cracking strength, tensile strength, and 
strain capacity of C-40. 

Figure 33a presents the average first-cracking strength and tensile strength for all class C mixtures. 
The results indicated that the partial replacement of cement with PBA produced a slight 
enhancement in the first-cracking and tensile strength at the 40% cement replacement level; yet, it 
produced decrement in the strengths at 50% and 60% replacement levels. The highest increase in 
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the tensile strength for C-40 (i.e., 4.81 MPa tensile strength) compared to the control mixture (i.e., 
4.62 MPa tensile strength) was of 4.1%. On the other hand, the decrease in tensile strength for C-
50 and C-60 was of 10.4% (i.e., 4.1 MPa) and 28.1% (i.e., 3.3 MPa), respectively, compared to 
the control mixture. As per ANOVA analysis (presented in Appendix B Table B3), the average 
tensile strength differences among class C mixtures were statistically significant (p-value=0.001). 
Furthermore, the Tukey pairwise comparison showed that the only significant differences in tensile 
strength was between the C-60 and ECC mixtures C-0 and C-40 mixtures. 

As mentioned earlier, the tensile strength of ECC mixtures is determined by the frictional and 
chemical bond where the chemical bond with PVA fibers is affected by the metal ion concentration 
in the matrix (specially Ca+). Since PBA has less free calcium ions (Ca+) in comparison to cement, 
the increase in cement replacement with PBA likely decreased the chemical interaction at the 
fiber/matrix ITZ; thus, weakening the chemical bond. This mechanism was likely effective for all 
mixtures, including C-40. However, it is hypothesized that PBA's pozzolanic and/or filler effect 
further enhanced the pore structure at the ITZ between the fiber and matrix; thus, improving the 
frictional bond. For C-40, any decrease in the chemical bond may have been outweighed by the 
frictional bond's enhancement, thus resulting in the overall increase in the tensile strength. 
However, the decrease in the chemical bond may have become a dominant factor at higher cement 
replacement levels with PBA, thus producing the tensile strength decrease. Furthermore, it is 
important to mention that at 60% cement replacement level, even after the maximum dosage of 
HRWR (i.e., 1.5% by cement weight) was used, significant fiber clumping was observed due to 
lack of proper workability. This in turn, might also partially explain the marked decrease in tensile 
strength observed for C-60. 
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Figure 32. Tensile stress-strain curves for class C ECC mixtures: (a) C-0, (b) C-40, (c) C-50, and (d) C-60 

The average tensile strain capacity for all class C mixtures is presented in Figure 33b. The results 
show that all PBA admixed ECC mixtures exhibited higher tensile ductility than the control 
mixture. The increments relative to the control mixture (with 0.27% tensile strain capacity) were 
of 7.4% for C-40 (i.e., 0.29% strain capacity), 85.2% for C-50 (i.e., 0.50% strain capacity), and 
3.6% for C-60 (i.e., 0.28% strain capacity). However, the ANOVA analysis showed no statistically 
significant differences in the average tensile strain capacities of the ECC mixtures evaluated (p-
value = 0.062). It is important to mention that these tensile strain capacity values are smaller than 
the typical tensile strain capacity for ECC mixtures (i.e., tensile strain capacity ranges from 1% to 
8%). Nevertheless, the tensile strain capacity of the best performing class C mixture (C-50), in 
terms of ductility, was 0.50%, which is 50 times higher than that of regular concrete. It is important 
to mention that the low tensile ductility observed in the control mixture was due to the absence of 
the pozzolanic SCMs in its composition. This resulted in a high concentration of Ca+ ions in the 
matrix and formed a strong chemical bond; thus, eliminating the possibility of exhibiting pseudo-
strain hardening behavior. 
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For class C mixtures, the increase in tensile ductility for PBA admixed ECC materials is likely 
attributed to the decrease in the chemical bond. The decrease in the chemical bond allows more 
fibers to enter the pullout stage; thus, increasing 𝐽 . In addition, previous studies have shown that 
the increase in the content of the pozzolanic materials, such as fly ash, tends to decrease 𝐽  (53, 
57). As such, it is hypothesized PBA also had an effect in decreasing 𝐽 . Consequently, it is 
believed that the potential increase in 𝐽  and decrease in 𝐽  are responsible for the improvement 
in the tensile ductility observed. However, as previously mentioned, an important loss in 
workability was observed at 60% cement replacement level with PBA, which produced fiber 
clumping. This, in turn, likely led to the reduction in tensile ductility for C-60 in comparison to C-
50. 
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Figure 33. Uniaxial tensile test results: (a) First-cracking strength and tensile strength and (b) Strain at peak strength 

5.3.4. Surface Resistivity 
5.3.4.1 Class S Mixtures 

Figure 34a presents the surface resistivity (SR) values for class S mixtures. The experimental 
results show a progressive decrease in SR values with an increase in sand replacement level with 
RBA. For the control mixture, the SR value (i.e., 23.9 KΩ-cm) fell in the category of low chloride 
ion penetrability (CIP) per AASHTO T358 (i.e., SR values between 21 – 37 kΩ-cm, as per Table 
6). In the case of S-25, the surface resistivity value decreased to 21.8 KΩ-cm (i.e., 8.8% decrease 
compared to control). Nevertheless, S-25 remained in the low CIP category with the control 
mixture. However, an increase in sand replacement with RBA beyond 25% led to a more 
pronounced decrease in SR with mixtures falling in the moderate CIP category (i.e., surface 
resistivity values between 12 – 21 kΩ-cm). Relative to the control mixture, the surface resistivity 
values decreased by 18.9% (i.e., 19.4 kΩ-cm) for S-50, 31.1% (i.e., 16.4 kΩ-cm) for S-75, and 
43.4% (i.e., 13.5 kΩ-cm) for S-100. The decrease in SR may be primarily attributed to the 
increased air content with the increment of sand replacement with RBA, as discussed earlier. In 
turn, the increase in the number of air voids in the matrix can increase the permeability of the 
material and reduce the SR. It is worth mentioning that the high carbon content of RBA may have 
also influenced the obtained SR values since carbon may affect the electrical conductivity of the 
material. Furthermore, it is important to acknowledge that RBA's porous nature may increase the 
total porosity of the ECC materials; thus, contributing to the SR decrease. Future studies should 
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be conducted to evaluate the durability potential of these mixtures using direct permeability 
assessment methods (such as rapid chloride ion penetrability test) and evaluate whether SR is a 
reliable indicator of the CIP in RBA admixed ECC materials. 

5.3.4.2 Class C Mixtures 

For class C mixtures, a significant increase in surface resistivity with the increase in PBA content 
is observed. Relative to control (with SR value of 6.2 kΩ-cm), the increase in SR values for C-40, 
C-50, and C-60 were 43.7% (i.e., 8.9 kΩ-cm), 72.1% (i.e., 10.7 kΩ-cm ), and 71.8% (i.e., 10.6 kΩ-
cm), respectively. However, surprisingly, all class C mixtures exhibited exceptionally low SR 
values, i.e., all materials fell into the high CIP category. This is attributed to the lack of fly ash 
utilization in these mixtures, which likely negatively affected the microstructure of the composite. 
On the other hand, the enhancement in the SR of the PBA admixed materials was attributed to the 
potentially improved pore structure provided by PBA's filler/pozzolanic effect. Yet, it is 
recognized that this effect was significantly less influential as that of fly ash since even at 60% 
cement replacement with PBA, SR values were low compared to those observed for class S 
mixtures, which did implement fly ash. It is worth mentioning that at later curing ages, the SR may 
significantly increase due to the matrix's densification (credited to the formation of secondary 
hydration products through the pozzolanic reaction). Future studies should be conducted to 
evaluate the durability potential of these mixtures using more direct permeability assessment 
methods (such as rapid chloride ion penetrability test ) and evaluate if the differences in matrix 
and fiber conductivity influence the surface resistivity readings for both class S and class C 
mixtures. 

(a) (b) 

Figure 34. Surface resistivity for ECC materials: (a) Class S mixtures and (b) Class C mixtures. 

5.3.5. Shrinkage 
5.3.5.1 Class S Mixtures 

The shrinkage during the curing phase for class S mixtures at 7, 14, and 28 days of curing are 
presented in Figure 33a. The reported values are the average of four replicas. It is observed that 
the shrinkage during curing for class S mixtures is relatively low (in the range from 25 𝜇m to 167.5 
𝜇m). For class S mixtures, all RBA admixed ECCs (except for S-25 at 28 days of curing) showed 
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an increased shrinkage during curing compared to the control mixture at all ages of curing. The 
greatest shrinkage increase reported at 28 days was for S-50 with an increase of 34% compared to 
the control mixture (i.e., from 125 𝜇𝜀 to 167.5 𝜇𝜀). However, an evident relationship was not 
observed between the RBA content and shrinkage. The higher shrinkage for RBA admixed ECC 
mixtures compared to control may be credited to the restraining action of aggregate. From previous 
literature, it is well documented that the restraining action of aggregate increases with the increase 
in aggregate particle size (41, 91). As such, since RBA particles are significantly finer than those 
of the fine river sand being replaced, this is likely the main cause of the increment in shrinkage 
observed. 

5.3.5.2 Class C Mixtures 

The shrinkage for all class C mixtures at 7, 14, and 28 days of curing are presented in Figure 34b. 
Generally, it was observed that the shrinkage values were significantly higher than those observed 
for class S mixtures. Furthermore, it was observed that at all curing ages, the shrinkage for PBA 
admixed mixtures were higher than the control, except for C-50 at seven days of curing. At 28 
days of curing, the maximum increase in relative length change compared to control was of 24.4% 
(i.e., from 900 𝜇𝜀 to 1120 𝜇𝜀) for C-60. In contrast to class S mixtures, in class C mixtures, a 
distinctive positive relation was encountered between the shrinkage and PBA content at 14 and 28 
days of curing. However, it is important to notice that these differences were not significant. 
Previous studies have demonstrated fly ash's effect in reducing the shrinkage of ECC materials 
(57, 92). As such, the dramatic increase in shrinkage for class C mixtures (compared to class S 
mixtures) is attributed to the fact that these materials did not implement fly ash in its composition. 
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Figure 35. Length change during curing: (a) Class S mixtures and (b) Class C mixtures 

5.3.6. Crack Width Analysis 
Unlike concrete materials, ECCs exhibits high ductility by the formation of multiple tight 
microcracks (typically in the range of 60-100 𝜇m). Figures 36a and 36b presents the average 
residual crack width and number of cracks observed in dog-bone shaped specimens upon 
completion of the uniaxial tensile test. It is worth mentioning that three specimens were 
investigated per mixture design under the light microscope. 
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From Figure 36a, it is observed that the widths of the cracks were tight and did not exceed an 
average width of 58.2 𝜇m for any of the produced mixtures. However, the use of RBA produced a 
slight increase in the average crack width. Compared to control, at 25, 50, 75, and 100% sand 
replacement with RBA, the average residual crack width increased by 11.2, 13.6, 4.6%, and 0.7%, 
respectively. This was attributed to a potential decrease in the fiber/matrix chemical bond due to 
RBA implementation. From Figure 36b, it is observed that the number of cracks increased with 
the increment in the sand replacement level with RBA. This, in turn, is in agreement with the 
enhancements in tensile ductility reported in the uniaxial tensile test section. Figure 36c and 36d 
present a specimen of the S-0 and S-100 ECC mixture, respectively. While the S-0 specimen only 
exhibited a few cracks, a robust multiple-cracking behavior with tight cracks is evident for S-100 
specimen. From the results presented, class S ECC material has the potential to produce structures 
with excellent durability since crack widths below 100 µm do not significantly increase concrete 
permeability (93). Furthermore, it is important to mention that cracks under 50 𝜇m in width have 
been reported to significantly benefit from robust autogenous healing, therefore class S ECC 
material may benefit from substantial self-healing capabilities; thus, enhancing the resiliency of 
these composites (94). 
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Figure 36. Characterization of ECC cracking for class S mixtures: (a) Average residual cracks, (b) Number of cracks in 
class S mixtures, (c) S-0 dog-bone shaped, and (d) S-100 dog-bone shaped sample after tested in uniaxial tension. 
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5.3.7. Slant Shear Test 
Figure 37a presents the average slant shear bond strength for the S-75/concrete and C-50/concrete 
composite cylinders after 28 days of curing (for the top layers, i.e., SCBA admixed ECC mixtures). 
The S-75 mixture was selected for the slant shear test since it produced good mechanical strength, 
high tensile ductility, and proper fresh state workability. On the other hand, C-50 was selected 
since it was the composite exhibiting the highest tensile ductility from all the class C mixtures. 
The calculated bond strength for the class S mixture was 13.1 MPa (1905 psi), while for the class 
C mixture, it was 13.5 MPa (1963 psi). It is important to mention that these bond strengths are 
minimum bond strength values since failure did not occur in the slant surface. Figures 37b, 37c, 
and 37d show the composite cylinders for the class S and class C mixtures after failure, 
respectively. It is observed that the cylinders failed in the top layer for class S specimens (i.e., 
failure of the class S mixtures). This was the case since the concrete substrate exhibited higher 
compressive strength than the S-75. In the case of the class C mixture, two failure modes occurred, 
failure at the substrate layer (Figure 37c) and top/bottom layer mixed failure (Figure 37d). The 
concrete used as a substrate had a 28-day compressive strength of 38.0 MPa, while the S-75 and 
C-50 mixtures used as top layers had a 28-day compressive strength of 29.8 MPa and 43.6 MPa, 
respectively. It is important to highlight that the concrete substrate was allowed to cure for 28-days 
prior to the pour of the top ECC layer. As such, when the composite cylinder was tested, the 
concrete substrate had 56 days of curing. For this reason, the concrete substrate did exhibit a higher 
compressive strength during the slant shear test than the 28-day strength reported above. This in 
turn, explain the different types of failure observed for the class C mixture as the compressive 
strength of the substrate was likely very close to that of the top ECC layer during the SST. Since 
the failure mode of both SCBA admixed ECC materials was not observed at the slant surface, this 
implies that the materials exhibit excellent bond characteristics. However, the class C mixture 
exhibited a higher bond strength than the class S mixture. This was the case since the class C 
composite exhibited a higher compressive strength. Nevertheless, both class mixtures present 
excellent potential to be used as a repair material. 
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Figure 37. Slant shear test: (a) Average shear stress at failure, MPa, (b) Class S composite cylinder failure mode, (c) Class 
C composite cylinder substrate failure mode, (d) Class C composite cylinder mixed failure mode 

5.3.8. Coefficient of Thermal Expansion 
The coefficient of thermal expansion (CTE) for class S and C mixtures is presented in Figure 38a 
and 38b, respectively. For class S mixtures, replacement of sand with RBA increased the CTE, 
i.e., all RBA admixed ECC mixtures exhibited higher CTE than the control mixture. Among all 
class S mixtures, S-50 exhibited higher CTE. Relative to the control mixture with CTE of 5.4 
microstrain per °C, the increase in CTE for S-50 was 43.4% (i.e., CTE of 7.7 microstrain/°C). The 
CTE for RBA admixed ECC mixtures ranged from 6.7 to 7.7 microstrain/°C. It is worth mentioning 
that the CTE of PCC ranges between 7.4 to 13 microstrain/°C (95). As such, all RBA admixed 
ECC CTE values were comparable to that of concrete. The CTE of cementitious materials is 
influenced by several factors, including aggregate type (i.e., concrete using limestone has a lower 
CTE than concrete using siliceous aggregate), cement content and fineness, W/C ratio, cement and 
SCMs composition, and age (95). Since RBA addition increases the CTE of the mixture, it is 
hypothesized that the CTE of RBA is higher than that of silica sand. 

For class C mixture, the CTE decreased with the increase in cement replacement level with PBA. 
For instance, the CTE of the control mixture was 13.2 microstrain/°C, which decreased up to 10.6 
microstrain/°C for C-50 (i.e., a decrease of 19.7%). The CTE for PBA admixed ECC materials 
ranged from 11.2 to 10.6 microstrains/°C. It is important to mention that the control mixture 
exhibited slightly higher CTE than typical values for PCC. Since the CTE of cement paste is higher 
(i.e., 18 to 20 microstrain/°C) (95) than a typical concrete mixture, the high CTE for the class C 
mixture may be attributed to the higher content of cement. Furthermore, PBA decreased the CTE 
of ECC mixtures, indicating PBA admixed ECC has a lower potential for thermally induced 
dimensional changes. 
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Figure 38. Coefficient of thermal expansion: (a) Class S mixtures and (b) Class C mixtures 

5.4. Testing of Ecuador SCBA Admixed ECC Mixtures 

5.4.1. Compressive Strength 
The compressive strength of all class S-E mixtures at 7 and 28 days of curing is presented in 
Figures 39a and 39b, respectively. A distinctive trend of increase in compressive strength with the 
increase in the sand replacement level with EBA is observed at both curing ages (except for S-E-
100 compared to S-E-75). For instance, the increase in compressive strength for S-E-25, S-E-50, 
S-E-75, and S-E-100 at 7 days of curing compared to control (with compressive strength of 17.15 
MPa) was 16.5, 23.8, 20.7, and 19.1%, respectively. On the other hand, the increase in compressive 
strength at 28 days of curing for S-E-25, S-E-50, S-E-75, and S-E-100 compared to control (with 
compressive strength of 26.69 MPa) was 8.8, 12.9, 21.0, and 12.3%, respectively. As such, the 
increase in compressive strength with EBA addition was similar at both curing ages. It is worth 
mentioning that the EBA enhanced the compressive strength, which contrasts with the influence 
of RBA on compressive strength. Since EBA exhibited high SAI and met the SAI requirement to 
be classified as a pozzolan, the increase in compressive strength can be associated with its 
pozzolanic activity and/or filler effect. 
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Figure 39. EBA admixed ECC properties: (a) Compressive Strength at 7 days, (b) Compressive strength at 28 days, and 
(c) ECC Hardened Density at 28 Days 

Figure 39c presents the hardened densities of all class S-E mixtures. As seen in the figure, the 
density of the ECC mixtures decreased with the increase in the sand replacement level with SCBA. 
This was expected since SCBA exhibits a lower specific gravity than river sand. 

5.4.2. Flexural Strength Test 
The flexural strength of class S-E mixtures at 7 and 28 days of curing are presented in Figure 40a 
and 40b, respectively. A distinctive trend of increase in flexural strength with the increase in the 
sand replacement level with EBA is observed at both curing ages (except for S-E-100 compared 
to S-E-75 at 7 days of curing). For instance, the increase in flexural strength for S-E-25, S-E-50, 
S-E-75, and S-E-100 at 7 days of curing compared to the control mixture (with a flexural strength 
of 3.3 MPa) was 10.4, 14.4, 9.5, and 20.5%, respectively. Similarly, the increase in flexural 
strength for S-E-25, S-E-50, S-E-75, and S-E-100 at 28 days compared to control (with a flexural 
strength of 4.5 MPa) was 7.9, 9.6, 19.1, and 21.5%, respectively. It is worth mentioning that the 
flexural strength of cementitious composites is controlled by their tensile failure mode (96). As 
such, it is hypothesized that the pozzolanic and/or filler effect of EBA increased fiber/matrix 
frictional bond; thus, increasing the fiber-bridging capacity. Consequently, the enhanced fiber-
bridging capacity due to EBA addition resulted in a higher flexural strength of ECC mixtures. 
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Figure 40. EBA admixed ECC properties: (a) Flexural strength 7 days and (b) Flexural strength 28 days 

6. CONCLUSIONS 

This study evaluated the effects of raw SCBA (RBA) as a partial and complete replacement of 
sand (i.e., class S mixtures) and post-processed SCBA (PBA) as a partial replacement of cement 
(i.e., class C mixtures) on the mechanical and physical properties of ECC materials. Both RBA 
and PBA were produced in Louisiana. In addition, the study also evaluated the effect of raw SCBA 
(EBA) produced in Ecuador as a substitute to silica sand in ECC mixtures (i.e., class S-E mixtures). 
Based on the experimental findings and analysis, the following conclusions can be drawn: 

 RBA met the minimum pozzolanic component requirement (i.e., a minimum of 50% per 
ASTM C618) to be classified as class C pozzolan; however, it presented an unsatisfactory 
SAI of 71.2%, failing to meet the minimum SAI requirement (i.e., 75%) to be classified as 
a SCM. Consequently, RBA cannot be used as an SCM in concrete materials. The low SAI 
of RBA was mainly attributed to its high carbon content and relatively large particle size 
compared to cement. Nevertheless, compared to conventional fine aggregate, RBA 
exhibited a small particle size (i.e., mean particle size of 256 𝜇m), which makes it an 
excellent candidate to be used as fine aggregate in the manufacture of ECC materials. 

 The post-processing of RBA by further burning and grinding to produce PBA significantly 
increased the SAI of the SCBA to 78.8%; thus, allowing it to exceed the minimum SAI 
requirement to be classified as a pozzolan. Furthermore, PBA did also meet ASTM C618 
minimum pozzolanic component requirement (i.e., 70%) to be classified as a class F or N 
pozzolan. The enhancement in PBA's pozzolanic activity was mainly attributed to the finer 
particle size and removal of carbon due to the burning and grinding process. The mean 
particle size of the final ground PBA product was 28 𝜇m, which is comparable to that of 
the fly ash used in this study (i.e., 22.8 𝜇m). 

 Compared to RBA, EBA exhibited significantly higher SAI, i.e., 91.1%; thus, meeting the 
minimum SAI requirement to be classified as a pozzolan. However, like RBA, EBA 
exhibited large particle size (i.e., mean particle size of 248 𝜇m) relative to cement and high 
carbon content. Therefore, use of RBA as SCM is not advised. Instead, RBA presented the 
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potential to be an excellent substitute to silica sand in ECC mixtures. The significant 
difference in pozzolanic properties of RBA and EBA highlights the effect of SCBA source 
on the material properties. This discrepancy may also arise due to the difference in the 
burning methodology of sugarcane bagasse fibers at respective sugar mills, which 
influences the SCBA chemical composition. 

 The increase in sand replacement with RBA caused a small reduction in the compressive 
strength of class C ECC materials at 28 days of curing. The maximum strength decrease 
observed was of 11% for the ECC mixture using 75% of sand replacement with RBA. This 
strength reduction was attributed to the increase in air content observed with the increase 
in RBA dosage, which was associated with the necessary increase in HRWR required to 
produce a workable mixture. Nevertheless, the decreases in compressive strength observed 
for the amount of additional air content reported (compared to control) were lower than 
expected. This was credited to RBA's pozzolanic and/or filler effect, which likely mitigated 
the compressive strength decrease. For the case of cement replacement with PBA, 
increasing replacement of cement with PBA caused important reductions in compressive 
strength. The maximum decrease in compressive strength observed of 39.1% occurred at 
the maximum cement replacement level evaluated of 60% by weight. The significant 
decrements in compressive strength observed were attributed to the fact that the cylinders 
were evaluated at 28 days of curing; thus, substantially limiting the contribution of the 
pozzolanic reaction of PBA to the strength gain of the ECC mixtures. However, it is 
expected that at later ages of curing, the PBA admixed ECC materials should exhibit 
smaller differences in compressive strength compared to the control ECC mixture. 

 The implementation of RBA as sand replacement in ECC materials (i.e., class S mixtures) 
dramatically improved the tensile strain capacity of the composites. Compared to the 
control ECC, the maximum tensile strain capacity enhancement reported was 311%, which 
occurred for the ECC mixture implementing a 100% replacement of sand with RBA. 
Furthermore, the tensile strength of all RBA admixed ECCs did also improve compared to 
control, with the maximum reported increase of 22.3% occurring at 25% of sand 
replacement with RBA. The increase in the tensile ductility was attributed to the combined 
effect of a reduction in 𝐽  (due to the decrease of the aggregate particle size), an increase 
in 𝐽  (due to the decrease in the chemical bond from the potential fiber carbon coating effect 
produced by RBA), and an enhanced fiber dispersion (achieved due to RBA's small particle 
size compared to the fine river sand used in this study). On the other hand, the tensile 
strength enhancement observed was attributed to RBA's filler and/or pozzolanic effect, 
which likely resulted in an improvement in the fiber/matrix frictional bond. For the case of 
cement replacement with PBA (i.e., class C mixtures), the addition of PBA did also 
produce an enhancement in the tensile ductility of all the PBA admixed ECC materials. 
Compared to control, an increase in the tensile strain capacity of up to 85% was observed 
for the ECC mixture utilizing 50% cement replacement with PBA. These observations were 
primarily attributed to a reduction in 𝐽  (due to the weakening of the cementitious matrix 
with PBA addition) and a possible increase in 𝐽  (associated with the decrease in the 
fiber/matrix chemical bond due to the reduction in the concentration of calcium ions in the 
matrix by PBA addition), leading to an increase in the PSH energy index (𝐽  /𝐽 ). 
Regarding the tensile strength of class C mixtures, when 40% of cement was replaced with 
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PBA, a marginal enhancement in tensile strength of 4.1% was observed compared to the 
control mixture. However, the mixtures using 50% and 60% of cement replacement with 
PBA exhibited lower tensile strengths compared to control. The maximum decrement in 
tensile strength of 28.1% was reported for the ECC mixture implementing 60% cement 
replacement with PBA. 

 For class S-E mixtures, the implementation of sand replacement with EBA produced an 
increase in compressive strength of ECC mixtures at 7 and 28 days of curing. At 28 days, 
the maximum increase in compressive reported of 21.0% occurred at a sand replacement 
level of 75% by volume. The improvements observed in the compressive strength were 
attributed to the high SAI exhibited by EBA. Similar improvements were observed in the 
flexural strength of EBA admixed ECC materials. An enhancement of up to 21.5% in 
flexural strength was reported for the ECC mixture using 100% of sand replaced with EBA 
at 28 days of curing. These improvements were attributed to EBA's pozzolanic activity 
and/or filler effect, which likely enhanced the fiber bridging capacity of the EBA admixed 
ECC mixtures. 

 The surface resistivity of ECC materials showed a progressive decrease with the increase 
in sand replacement level with RBA. However, both the control mixture and the ECC 
mixture using 25% of RBA as a substitution to sand fell in the category of low CIP. With 
regard to the ECC mixtures implementing 50, 75, and 100% RBA as a sand replacement, 
these fell in the category of medium CIP. The decrease in surface resistivity with RBA 
addition was attributed to the increase in air content (associated with the increasing 
contents of HRWR dosage), RBA's porous nature, and the high carbon content of RBA 
(which may have affected the electrical conductivity of the materials). For mixtures 
implementing PBA as cement replacement (i.e., class C mixtures), the surface resistivity 
increased with the increase in cement replacement with PBA. However, all class C 
mixtures, including control, fell into the category of high CIP. This was attributed to the 
fact that class C mixtures did not implement fly ash in its composition. Furthermore, the 
progressive enhancement in surface resistivity with PBA addition was attributed to PBA's 
filler/pozzolanic effect. However, it is acknowledged that this effect was much less 
influential as that of fly ash since even at 60% cement replacement with PBA, SR values 
for class C mixtures were low compared to those observed for class S mixtures, which did 
implement fly ash. 

 For class S mixtures, excepting S-25 at 28 days of curing, all RBA admixed ECC showed 
an increase in shrinkage during curing compared to the control mixture at all ages of curing. 
The higher shrinkage observed for RBA admixed ECC mixtures was credited to a reduction 
in coarser sand particles due to the replacement of fine river sand with RBA. However, an 
evident relationship between RBA content and shrinkage was not distinguished. The 
greatest shrinkage increase reported at 28 days of curing was 34% for S-50 (compared to 
the control). For class C mixtures, it was observed that the shrinkage values were 
significantly higher than those observed for class S mixtures. This was attributed to the 
lack of fly ash in the composition of class C mixtures. Moreover, it was observed that the 
shrinkage for PBA admixed mixtures was higher than control at all curing ages, except for 
C-50 at 7 days of curing. Furthermore, a distinctive positive relation was encountered 
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between the shrinkage and PBA content at 14 and 28 days of curing. At 28 days of curing, 
the maximum increase in shrinkage reported compared to control was of 24.4% for C-60. 

 Upon completion of the uniaxial tensile test, the average residual crack width for all class 
S ECC materials ranged from 51.3 to 58.2 µm. The tight crack width reported suggests that 
ECC mixtures implementing RBA as a sand replacement may provide with low 
permeability and significant autogenous healing capabilities; thus, translating into an 
excellent durability potential. 

 The failure mode of ECC mixtures S-75 and C-50 subjected to slant shear test on a concrete 
substrate did not occur in the slant surface; thus, indicating excellent bond characteristics 
of these materials. 
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APPENDIX A: STATISTICAL ANALYSIS FOR COMPRESSIVE 
STRENGTH 

A.1 Statistical Analysis for Class S Mixtures 

Table A1. Class S concrete cylinders 28 days compressive strength one-way ANOVA results 

Source 
Model 
Error 

DF 
4 
10 

Sum of Squares 
787747.0667 
151596.6667 

Mean Square 
196936.7667 
15159.6667 

F Value 
12.99 

Pr > F 
0.0006 

Corrected Total 14 939343.7333 

Figure A1. Class S concrete cylinders 28 days compressive strength Tukey grouping for means of index (𝜶 = 0.05) 
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A.2 Statistical Analysis for Class C Mixtures 

Table A2. Class C concrete cylinders 28 days compressive strength one-way ANOVA results 

Source 
Model 
Error 

DF 
4 
10 

Sum of Squares 
777.9003 
4.1280 

Mean Square 
194.4750 

0.4128 

F Value 
471.10 

Pr > F 
<.0001 

Corrected Total 14 782.0283 

Figure A2. Class C concrete cylinders 28 days compressive strength Tukey grouping for means of index (𝜶 = 0.05) 
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APPENDIX B: STATISTICAL ANALYSIS FOR TENSILE STRENGTH 
AND TENSILE STRAIN CAPACITY 

B1. Statistical Analysis for Tensile Strength of Class S Mixtures 

Table B1. Class S mixtures 28 days tensile strength one-way ANOVA results 

Source 
Model 
Error 

DF 
4 

25 

Sum of Squares 
2.31698347 
3.46096733 

Mean Square 
0.57924587 
0.13843869 

F Value 
4.18 

Pr > F 
0.0099 

Corrected Total 29 5.77795080 

Means covered by the same bar are not signif icantly dif ferent . 

25 4.5650 

100 4.0517 

75 4.0417 

50 3.9183 

0 3.7273 

Figure B1. Class S mixtures 28 days tensile strength Tukey grouping for means of index (𝜶 = 0.05) 
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B2. Statistical Analysis for Tensile Strain Capacity of Class S Mixtures 

Table B2. Class S mixtures 28 days tensile strain capacity one-way ANOVA results 

Source 
Model 
Error 

DF 
4 

25 

Sum of Squares 
34.0483467 
67.2868833 

Mean Square 
8.5120867 
2.6914753 

F Value 
3.16 

Pr > F 
0.0311 

Corrected Total 29 101.3352300 

Figure B2. Class S mixtures 28 days tensile strain capacity Tukey grouping for means of index (𝜶 = 0.05) 
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B3. Statistical Analysis for Tensile Strength of Class C Mixtures 

Table B3. Class C mixtures 28 days tensile strength one-way ANOVA results 

Source 
Model 
Error 

DF 
3 

19 

Sum of Squares 
7.53313861 
5.74846000 

Mean Square 
2.51104620 
0.30255053 

F Value 
8.30 

Pr > F 
0.0010 

Corrected Total 22 13.28159861 

Tensile_Strength_MPa Comparisons for Percent_Cement_Repla 
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    Differences for alpha=0.05 (Tukey-Kramer Adjustment) 

Not significant Significant 

Figure B3. Class C mixtures 28 days tensile strength Tukey grouping for means of index (𝜶 = 0.05) 
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B4. Statistical Analysis for Tensile Strain Capacity of Class C Mixtures 

Table B4. Class C mixtures 28 days tensile strain capacity one-way ANOVA results 

Source 
Model 
Error 

DF 
3 

19 

Sum of Squares 
0.20514377 
0.45038667 

Mean Square 
0.06838126 
0.02370456 

F Value 
2.88 

Pr > F 
0.0627 

Corrected Total 22 0.65553043 
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    Differences for alpha=0.05 (Tukey-Kramer Adjustment) 

Not significant Significant 

Figure B4. Class C mixtures 28 days tensile strain capacity, Tukey grouping for means of index (𝜶 = 0.05) 
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